LIU Chun-mei, ZHONG Liu-qiang, SHU Shi, XIAO Ying-xiong. Convergence of an Adaptive Finite Element Method for 2D Elasticity Problems[J]. Applied Mathematics and Mechanics, 2014, 35(9): 969-978. doi: 10.3879/j.issn.1000-0887.2014.09.003
Citation: LIU Chun-mei, ZHONG Liu-qiang, SHU Shi, XIAO Ying-xiong. Convergence of an Adaptive Finite Element Method for 2D Elasticity Problems[J]. Applied Mathematics and Mechanics, 2014, 35(9): 969-978. doi: 10.3879/j.issn.1000-0887.2014.09.003

Convergence of an Adaptive Finite Element Method for 2D Elasticity Problems

doi: 10.3879/j.issn.1000-0887.2014.09.003
Funds:  The National Natural Science Foundation of China(11201159)
  • Received Date: 2014-01-20
  • Publish Date: 2014-09-15
  • For 2D linear elasticity problems, firstly, a standard adaptive finite element method (AFEM) was developed based on the newest vertex bisection grid refinement, which was marked only according to the error estimators without special treatment of the oscillation terms and intended conformance to the interior node properties. Secondly, through analysis of the numerical solution functions and error indicators at all the grid levels, the AFEM was strictly proved to be convergent by means of the orthogonality between the numerical solution functions at adjacent grid levels, the upper bound estimation of the energy errors between the true solution functions and the numerical solution functions, and the approximate compressibility of the error indicators between adjacent grid levels. Finally, several numerical experiments confirm that the presented AFEM is convergent and robust.
  • loading
  • [1]
    Senturia D S, Aluru N, White J. Simulating the behavior of MEMS devices: computational methods and needs[J].Computational Science & Engineering, IEEE,1997,4(1): 30-43.
    [2]
    Brenner S C, Li Y S. Linear finite element methods for planar linear elasticity[J].Mathematics of Computation,1992,59(200): 321-338.
    [3]
    Cai Z Q, Korsawe J, Starke G. An adaptive least squares mixed finite element method for the stress displacement formulation of linear elasticity[J].Numerical Methods for Partial Differential Equations,2005,21(1): 132-148.
    [4]
    陈竹昌, 王建华, 王卫中. 自适应多层网格有限元求解应力集中问题[J]. 同济大学学报, 1994, 22(3): 203-208.(CHEN Zhu-chang, WANG Jian-hua, WANG Wei-zhong. Adaptive multigrid FEM for stress concentration[J].Journal of Tongji University,1994,22(3): 203-208.(in Chinese))
    [5]
    梁力, 林韵梅. 有限元网格修正的自适应分析及其应用[J]. 工程力学, 1995,12(2): 109-118.(LIANG Li, LIN Yun-mei. Adaptive mesh refinement of finite element method and its application [J].Engineering Mechanics,1995,12(2): 109-118.(in Chinese))
    [6]
    Whiler T P. Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problem[J].Mathematics of Computation,2006,75(255): 1087-1102.
    [7]
    Lonsing M, Verfürth R. A posteriori error estimators for mixed finite element methods in linear elasticity[J].Numerische Mathematik,2004,97(4): 757-778.
    [8]
    刘春梅, 肖映雄, 舒 适, 钟柳强. 弹性力学问题自适应有限元及其局部多重网格法[J]. 工程力学, 2012,29(9): 60-67.(LIU Chun-mei, XIAO Ying-xiong, SHU Shi, ZHONG Liu-qiang. Adaptive finite element method and local multigrid method for elasticity problems[J].Engineering Mechanics,2012,29(9): 60-67.(in Chinese))
    [9]
    Carstemsen C. Convergence of adaptive finite element methods in computational mechanics[J].Applied Numerical Mathematics,2009,59(9): 2119-2130.
    [10]
    Cascon J, Kreuzer C, Nochetto R, Siebert K. Quasi-optimal convergence rate for an adaptive finite element method[J]. SIAM Journal on Numerical Analysis,2008,46(5): 2524-2550.
    [11]
    Bonsch E. Local mesh refinement in 2 and 3 dimensions[J].IMPACT of Computing in Science and Engineering,1991,3(3): 181-191.
    [12]
    Scott L R, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions[J].Mathematics of Computation,1990,54(190): 483-493.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1627) PDF downloads(868) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return