Abstract:
The analytical solution to the pharmacokinetics model plays a key role in the design of new drugs, especially in determining the pharmacokinetic parameters. In recent years, the analytical formulae for most of the pharmacokinetics models decided by the nonlinear Michaelis-Menten elimination process, were investigated and solved. However, the pharmacokinetics model with nonlinear Michaelis-Menten elimination rate for extravascular administration was a non-autonomous system, which resulted in difficulties in seeking its analytical solutions. Therefore, the problem of approximation to the solutions to the non-autonomous nonlinear pharmacokinetics models in the cases of single or periodic extravascular administrations was addressed. Different upper and lower bounds were given based on the comparison theorems for differential equations and impulsive differential equations, with the definition and related properties of the Lambert W function employed. Numerical simulations show the effectiveness of the proposed approximation method.