HUANG Peng-zhan, HE Yin-nian, FENG Xin-long. A Two-Level Stabilized Finite Element Method for the Stokes Eigenvalue Problem[J]. Applied Mathematics and Mechanics, 2012, 33(5): 588-597. doi: 10.3879/j.issn.1000-0887.2012.05.007
Citation: HUANG Peng-zhan, HE Yin-nian, FENG Xin-long. A Two-Level Stabilized Finite Element Method for the Stokes Eigenvalue Problem[J]. Applied Mathematics and Mechanics, 2012, 33(5): 588-597. doi: 10.3879/j.issn.1000-0887.2012.05.007

A Two-Level Stabilized Finite Element Method for the Stokes Eigenvalue Problem

doi: 10.3879/j.issn.1000-0887.2012.05.007
  • Received Date: 2011-05-04
  • Rev Recd Date: 2012-02-10
  • Publish Date: 2012-05-15
  • A two-level stabilized finite element method for the Stokes eigenvalue problem based on local Gauss integration was considered. The method involved solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h=O(H2), which can still maintain an asymptotically optimal accuracy. The given method provided an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution, which involved solving a Stokes eigenvalue problem on a fine mesh with mesh size h.Hence, the method can save a large amount of computational time. Moreover, numerical tests confirmed the theoretical results of the presented method.
  • loading
  • [1]
    Babuska I, Osborn J E. Eigenvalue Problems[C]Ciarlet P G, Lions J L.Handbook of Numerical Analysis, vol Ⅱ, Finite Element Method (Part Ⅰ). Amsterdam: North-Holland, 1991.
    [2]
    Babuska I, Osborn J E. Finite Element-Galerkin approximation of the eigenvalues and eigenvectors of self adjoint problems[J]. Math Comp, 1989, 52(186): 275-297.
    [3]
    Lin Q, Xie H. Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method[J]. Appl Numer Math, 2009, 59(8): 1884-1893.
    [4]
    Lin Q. Fourth order eigenvalue approximation by extrapolation on domains with reentrant corners[J]. Numer Math, 1991, 58(1): 631-640.
    [5]
    Jia S, Xie H, Yin X, Gao S. Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods[J]. Appl Math, 2009, 54(1): 1-15.
    [6]
    Chen H, Jia S H, Xie H. Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem[J]. Appl Numer Math, 2011, 61(4): 615-629.
    [7]
    Chen H, Jia S, Xie H. Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems[J]. Appl Math, 2009, 54(3): 237-250.
    [8]
    Huang P Z, He Y N, Feng X L. Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem[J]. Math Prob Engrg, 2011, 2011: 1-14.
    [9]
    Chen W, Lin Q. Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method[J]. Appl Math, 2006, 51(1): 73-88.
    [10]
    Mercier B, Osborn J, Rappaz J, Raviart P A. Eigenvalue approximation by mixed and hybrid methods[J]. Math Comput, 1981, 36(154): 427-453.
    [11]
    Xu J, Zhou A H. A two-grid discretization scheme for eigenvalue problems[J]. Math Comput, 2009, 70(233): 17-25.
    [12]
    Yin X, Xie H, Jia S, Gao S. Asymptotic expansions and extrapolations of eigenvalues for the Stokes problem by mixed finite element methods[J]. J Comput Appl Math, 2008, 215(1): 127-141.
    [13]
    Lovadina C, Lyly M, Stenberg R. A posteriori estimates for the Stokes eigenvalue problem[J]. Numer Meth Part Differ Equ, 2009, 25(1): 244-257.
    [14]
    Luo F, Lin Q, Xie H. Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods[J]. Sci China Math, 2012. doi: 10.1007/s11425-012-4382-2.
    [15]
    Bochev P, Dohrmann C R, Gunzburger M D. Stabilization of low-order mixed finite elements for the Stokes equations[J]. SIAM J Numer Anal, 2006, 44(1): 82-101.
    [16]
    Li J, He Y N. A stabilized finite element method based on two local Gauss integrations for the Stokes equations[J]. J Comput Appl Math, 2008, 214(1): 58-65.
    [17]
    Li J, Chen Z. A new local stabilized nonconforming finite element method for the Stokes equations[J]. Computing, 2008, 82(2): 157-170.
    [18]
    Li J, He Y N, Chen Z X. A new stabilized finite element method for the transient Navier-Stokes equations[J]. Comput Methods Appl Mech Engrg, 2007, 197(1): 22-35.
    [19]
    Li J. Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier-Stokes equations[J]. Appl Math Comput, 2006, 182(2): 1470-1481.
    [20]
    Huang P Z, Zhang T, Si Z Y. A stabilized Oseen iterative finite element method for stationary conduction-convection equations[J]. Math Meth Appl Sci, 2012, 35(1): 103-118.
    [21]
    Xu J. A novel two-grid method for semilinear elliptic equations[J]. SIAM J Sci Comput, 1994, 15(1): 231-237.
    [22]
    Xu J. Two-grid discretization techniques for linear and nonlinear PDEs[J]. SIAM J Numer Anal, 1996, 33(5): 1759-1778.
    [23]
    Layton W, Tobiska L. A two-level method with backtracking for the Navier-Stokes equations[J]. SIAM J Numer Anal, 1998, 35(5): 2035-2054.
    [24]
    马飞遥, 马逸尘, 沃维丰.基于二重网格的定常Navier-Stokes方程的局部和并行有限元算法[J]. 应用数学和力学, 2007, 28(1): 25-33.(MA Fei-yao, MA Yi-chen, WO Wei-feng. Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations[J]. Applied Mathematics and Mechanics(English Edition), 2007, 28(1): 27-35.)
    [25]
    秦新强, 马逸尘, 章胤.二维非线性对流扩散方程特征有限元的两重网络算法[J]. 应用数学和力学, 2005, 26(11): 1365-1372.(QIN Xin-qiang, MA Yi-chen, ZHANG Yin. Two-grid method for characteristics finite-element solution of 2D nonlinear convection-dominated diffusion problem[J]. Applied Mathematics and Mechanics(English Edition), 2005, 26(11): 1506-1514.)
    [26]
    王琤, 黄自萍, 李立康.二阶椭圆问题带单位分解技巧的两重网格方法[J]. 应用数学和力学, 2008, 29(4): 477-482.(WANG Cheng, HUANG Zi-ping, LI Li-kang. Two-grid partition of unity method for second order elliptic problems[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(4): 527-533.)
    [27]
    Zhang Y, He Y N. A two-level finite element method for the stationary Navier-Stokes equations based on a stabilized local projection[J]. Numer Meth Part Differ Equ, 2011, 27(2): 460-477.
    [28]
    Ervin V, Layton W, Maubach J. A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations[J]. Numer Meth Part Differ Equ, 1996, 12(3): 333-346.
    [29]
    He Y N, Li K T. Two-level stabilized finite element methods for the steady Navier-Stokes problem[J]. Computing, 2005, 74(4): 337-351.
    [30]
    He Y N, Wang A W. A simplified two-level method for the steady Navier-Stokes equations[J]. Comput Methods Appl Mech Engrg, 2008, 197(17): 1568-1576.
    [31]
    尚月强, 罗振东. Navier-Stokes方程的一种并行两水平有限元方法[J]. 应用数学和力学, 2010, 31(11): 1351-1359.(SHANG Yue-qiang, LUO Zhen-dong. A parallel two-level finite element method for the Navier-Stokes equations[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(11): 1429-1438.)
    [32]
    Becker R, Hansbo P. A simple pressure stabilization method for the Stokes equation[J]. Commun Numer Meth Engrg, 2008, 24(11): 1421-1430.
    [33]
    Hecht F, Pironneau O, Hyaric A L, Ohtsuka K. FREEFEM++
    [34]
    [P/OL], version 2.3-3, Paris, 2008
    [35]
    [2012-03-19], http:www.freefem.org.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2034) PDF downloads(839) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return