Abstract:
Spacecrafts with the pure gravity environment were of great significance in precision navigation, gravity field measurement for celestial bodies and basic physics experiments. Radiometer effect was one of the important interfering factors on proof mass in the purely gravitational orbit. For gravity field measurement system based on inner-formation flying, the relationship between radiometer effect on the inner-satellite and system parameters was studied by using analytical and numerical methods, and an approximate function of radiometer effect suitable for engineering computation and its correction factor were obtained. Analytic results show that radiometer effect on the inner-satellite is proportional to the average pressure but inversely proportional to the average temperature in the outersatellite cavity. The radiometer effect increases with the increase of temperature difference in the cavity and its minimum exists with the increase of the cavity radius. When the minimum of radiometer effect arrives, the ratio of the cavity radius and the inner-satellite radius is a constant 1.189 4. This constant is determined by the spherical cavity configuration and independent of the temperature and pressure distribution. When the ratio of the cavity radius and the inner-satellite radius is more than 10, it is believed that the cavity is large enough and radiometer effect is approximately proportional to the square of the inner-satellite radius and the change of radiometer effect with the outersatellite cavity radius can be ignored.