MAN Shumin, GAO Qiang, ZHONG Wanxie. A StructurePreserving Algorithm for Hamiltonian Systems With Nonholonomic Constraints[J]. Applied Mathematics and Mechanics, 2020, 41(6): 581-590. doi: 10.21656/1000-0887.400375
Citation: MAN Shumin, GAO Qiang, ZHONG Wanxie. A StructurePreserving Algorithm for Hamiltonian Systems With Nonholonomic Constraints[J]. Applied Mathematics and Mechanics, 2020, 41(6): 581-590. doi: 10.21656/1000-0887.400375

A StructurePreserving Algorithm for Hamiltonian Systems With Nonholonomic Constraints

doi: 10.21656/1000-0887.400375
Funds:  The National Natural Science Foundation of China(11972107;91748203)
  • Received Date: 2019-12-23
  • Publish Date: 2020-06-01
  • Based on the concept of variational integrator and the Lagrange-d’Alembert principle with dual variables, a high-order structure-preserving algorithm for Hamiltonian systems with nonholonomic constraints was proposed. Based on the variational integrator, a discretization form of the Lagrange-d’Alembert principle with dual variables was obtained by means of appropriate polynomials and quadrature rules. On the basis of this discretization form, a numerical integration method was given with displacements at both ends of the integral interval as independent variables. Meanwhile, the nonholonomic constraints were strictly met at the endpoints of the integral interval and the control points within the interval. The symmetric property of the proposed algorithm was proved. Numerical examples show that, the proposed algorithm has a high convergence order, strictly meets the nonholonomic constraints and has good long-time behaviors.
  • loading
  • [1]
    HERTZ A, GARBASSO A. Die prinzipien der mechanik in neuem zusammenhang dargestellt[J]. Il Nuovo Cimento 〖STBX〗(1895—1900),1895,1(1): 40-59.
    [2]
    APPELL P. Traité de Mécanique Rationnelle [M]. Gauthier-Villars, 1924.
    [3]
    HAMEL G. Theoretische Mechanik [M]. Berlin: Springer, 1978.
    [4]
    BLOCH A M. Nonholonomic Mechanics and Control [M]. Berlin: Springer, 2015.
    [5]
    MARSDEN J E, WEST M. Discrete mechanics and variational integrators[J]. Acta Numerica,2001,10(1): 357-514.
    [6]
    LEW A, MARSDEN J E, ORTIZ M, et al. Variational time integrators[J]. International Journal for Numerical Methods in Engineering,2010,60(1): 153-212.
    [7]
    HAIRER E, WANNER G, LUBICH C. Geometric Numerical Integration [M]. Berlin: Springer, 2002.
    [8]
    CORTS J, MARTNEZ S. Non-holonomic integrators[J]. Nonlinearity,2001,14(5): 1365-1392.
    [9]
    CORTS J. Energy conserving nonholonomic integrators[J]. Discrete & Continuous Dynamical Systems,2003,2003(S): 189-199.
    [10]
    DE LEN M, DE DIEGO D M, SANTAMARIA-MERINO A. Geometric integrators and nonholonomic mechanics[J]. Journal of Mathematical Physics,2002,45(3): 1042.
    [11]
    DE LEN M, DE DIEGO D M, SANTAMARIA-MERINO A. Geometric numerical integration of nonholonomic systems and optimal control problems[J]. European Journal of Control,2004,10(5): 515-521.
    [12]
    MCLACHLAN R, PERLMUTTER M. Integrators for nonholonomic mechanical systems[J]. Journal of Nonlinear Science,2006,16(4): 283-328.
    [13]
    KOBILAROV M, MARSDEN J E, SUKHATME G S. Geometric discretization of nonholonomic systems with symmetries[J]. Discrete and Continuous Dynamical Systems(Series S),2010,3(1): 61-84.
    [14]
    GAO Q, TAN S J, ZHANG H W, et al. Symplectic algorithms based on the principle of least action and generating functions[J]. International Journal for Numerical Methods in Engineering,2012,89(4): 438-508.
    [15]
    HALL J, LEOK M. Spectral variational integrators[J]. Numerische Mathematik,2012,130(4): 681-740.
    [16]
    HAIRER E, LUBICH C, WANNER G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations [M]. Berlin: Springer, 2006.
    [17]
    OSTROWSKI J, LEWIS A, MURRAY R, et al. Nonholonomic mechanics and locomotion: the snakeboard example[C]// Paper Presented at the Proceedings of the 1994 IEEE International Conference on Robotics and Automation.Piscataway, USA, 1994.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1557) PDF downloads(556) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return