2020, 41(6): 615-626.
doi: 10.21656/1000-0887.400264
Abstract:
The AUSM-type schemes based on the advection upstream splitting method have the advantages of simpleness, high efficiency and high resolution, and are widely applied in computational fluid dynamics. The traditional AUSM-type schemes only consider the normal waves to the cell interface while ignoring the influence of tangential waves to the interface in the computation of the interfacial numerical flux. The flux of 2D Euler equations was split into the convective flux and the pressure flux by means of the AUSM splitting method, and they were both computed with the modified AUSM scheme. In the solution of the numerical flux at the corners where the influence of tangential waves was considered, a genuinely 2D AUSM flux splitting scheme was constructed. In the computation of 1D numerical examples, the proposed scheme keeps the merits of capturing shocks and contact discontinuities accurately. In the computation of the 2D numerical examples, the scheme has higher resolution and better robustness, while eliminating the instability behind the strong shock waves. In addition, with the scheme the stable CFL number greatly improves and the computation efficiency rises in the simulation of multidimensional problems. Therefore, the proposed scheme makes an accurate, efficient and robust numerical method.