DU Chunyao, YANG Liangui, ZHANG Yongli, ZHANG Ruigang. Nonlinear Near Inertial Waves With Complete Coriolis Effects[J]. Applied Mathematics and Mechanics, 2019, 40(9): 1000-1010. doi: 10.21656/1000-0887.390280
Citation: DU Chunyao, YANG Liangui, ZHANG Yongli, ZHANG Ruigang. Nonlinear Near Inertial Waves With Complete Coriolis Effects[J]. Applied Mathematics and Mechanics, 2019, 40(9): 1000-1010. doi: 10.21656/1000-0887.390280

Nonlinear Near Inertial Waves With Complete Coriolis Effects

doi: 10.21656/1000-0887.390280
Funds:  The National Natural Science Foundation of China(11762011)
  • Received Date: 2018-12-24
  • Rev Recd Date: 2019-06-28
  • Publish Date: 2019-09-01
  • Based on the original basic equations of atmospheric motion under the action of the complete Coriolis force, through the scale analysis, the multi-scale method and the perturbation expansion method were used to derive the Korteweg-de Vries equation satisfying the amplitude evolution of the atmospheric near inertial wave at the mid-high latitudes. The results of the evolution equation show that, the influence of the horizontal component of the Coriolis parameter on the nonlinear near inertial wave mainly lies in the correction of the dispersion effect and the interaction with the elementary stream. The physical mechanism of atmospheric near inertial wave motion at the mid-high latitudes under the action of the complete Coriolis force was theoretically explained.
  • loading
  • [1]
    ECKART C. Chapter Ⅳ: the field equations[J]. Hydrodynamics of Oceans and Atmospheres,1960,14(8): 52-63.
    [2]
    PHILLIPS N A. The equations of motion for a shallow rotating atmosphere and the traditional approximation[J]. Journal of the Atmospheric Sciences,2010,27(5): 504-505.
    [3]
    WHITE A A, BROMLEY R A. Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force[J]. Quarterly Journal of the Royal Meteorological Society,2010,121(522): 399-418.
    [4]
    GERKEMA T, ZIMMERMAN J, MAAS L. Geophysical and astrophysical fluid dynamics beyond the traditional approximation[J]. Reviews of Geophysics,1977,46(2): 1-33.
    [5]
    ROBERT R L. Solitary waves in the one- and two-fluid systems[J]. Tellus,1956,8(4): 460-471.
    [6]
    REDEKOPP L G. On the theory of solitary Rossby waves[J]. Journal of Fluid Mechanics,1977,82: 725-745.
    [7]
    WADATI M. The modified Korteweg-deVries equation[J]. Journal of the Physical Society of Japan,1973,34(5): 1289-1296.
    [8]
    CHARNEY J G, STRAUS D M. Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems[J]. Journal of the Atmospheric Sciences ,1980,6: 1205-1216.
    [9]
    BODY J P. Equatorial solitary waves, part Ⅰ: Rossby solitons[J]. Journal of Physical Oceanography,1980,10: 1699-1718.
    [10]
    BOYD J P. Equatorial solitary waves, part 2: envelope solitons[J]. Journal of Physical Oceanography,2010,13(3): 428-449.
    [11]
    LUO D H, JI L R. A theory of blocking formation in the atmosphere[J]. Science in China (Series B),1989,33(3): 323-333.
    [12]
    LIU S K, TAN B K. Solitary Rossby waves with the beta parameter[J]. J Applied Mathematic and Mechanics,1992,1: 35-43.
    [13]
    SONG J, YANG L G. Force solitary Rossby waves with beta effect and topography effect in stratified flows[J]. Acta Physica Sinica,2010,59(12): 221-226.
    [14]
    SONG J, YANG L G, LIU Q S. Solitary Rossby waves with beta effect and topography effect in a barotropic atmospheric model[J]. Progress in Geophysics,2012,27(2): 393-397.
    [15]
    SONG J, LIU Q S, YANG L G. Algebraic solitary Rossby wave excited slowly changing topography and beta effect[J]. Progress in Geophysics,2013,28(4): 1684-1688.
    [16]
    KASAHARA A J. Use of precipitation data for diabatic initialization to improve the tropical analysis of divergence and moisture[J]. Meteorology and Atmospheric Physics,1996,60(1/3): 143-156.
    [17]
    PHILLIPS N A. The equations of motion for a shallow rotating atmosphere and the traditional approximation[J]. Journal of the Atmospheric Sciences,1966,23(5): 626-628.
    [18]
    GERKEMA T, SHRIRA V I. Near-inertial waves in the ocean: beyond the ‘traditional approximation’[J]. Journal of Fluid Mechanics,2005,529: 195-219.
    [19]
    DELLAR P J, SALMON R. Shallow water equations with a complete Coriolis force and topography[J]. Physics of Fluids,2005,17(10): 1-100.
    [20]
    LONG R R. Solitary waves in the westerlies[J]. Journal of the Atmospheric Sciences,1964,〖STHZ〗 3: 197-200.
    [21]
    罗德海. 大气中非线性Rossby波包的传播[J]. 成都气象学院学报, 1991(2): 1-6.(LUO Dehai. Propagation of nonlinear Rossby wave packet in atmosphere[J]. Journal of Chengdu Institute of Information Engineering,1991(2): 1-6.(in Chinese))
    [22]
    张永利, 杨联贵. 正压大气模式中在地形效应和beta效应作用下的非线性Rossby包络孤立波[J]. 地球物理学进展, 2016,31(6): 1381-1386.(ZHANG Yongli, YANG Liangui. Nonlinear Rossby envelope solitary waves with topographic effect and β effect in the barotropic atmospheric model[J]. Progress in Geophysics,2016,31(6): 1381-1386.(in Chinese))
    [23]
    张永利, 杨联贵, 宋健. 地形效应下正压模式方程组的能量守恒[J]. 内蒙古大学学报(自然科学版), 2016,47(2): 140-144.(ZHANG Yongli, YANG Liangui, SONG Jian. Conservation of energy for positive pressure model system under topographic effect[J]. Journal of Inner Mongolia University (Natural Science Edition),2016,47(2): 140-144.(in Chinese))
    [24]
    张永利, 杨联贵. 地形效应下正压准地转模式的能量守恒[J]. 应用数学和力学, 2016,37(9): 936-944.(ZHANG Yongli, YANG Liangui. Conservation of energy in the barotropic quasi-geostrophic model under orographic effects[J]. Applied Mathematics and Mechanics,2016,37(9): 936-944.(in Chinese))
    [25]
    张颖娴. 北半球温带气旋的气候学及其变率研究[D]. 博士学位论文. 南京: 南京信息工程大学, 2012.(ZHANG Yingxian. A climatology and variation research of extratropical cyclones in the North Hemisphere[D]. PhD Thesis. Nanjing: Nanjing University of Information Science & Technology.(in Chinese))
    [26]
    郝世峰, 楼茂园, 杨诗芳, 等. 干斜压大气拉格朗日原始方程组的半解析解法和非线性密度流数值试验[J]. 物理学报, 2015,〖STHZ〗 64(19): 194702.(HAO Shifeng, LOU Maoyuan, YANG Shifang, et al. Semi-analytical solution of the dry baroclinic atmosphere primitive equations and nonlinear experiment of a non-liner density currente[J]. Acta Physica Sinica,2015,64(19): 194702.(in Chinese))
    [27]
    滕代高, 罗哲贤, 李春虎, 等. 斜压大气中台风涡旋自组织的研究[J]. 气象学报, 2008,66(1): 71-80.(TENG Daigao, LUO Zhexian, LI Chunhu, et al. Typhoon vortices self-organization in a baroclinic environment[J]. Acta Meteorologica Sinica,2008,66(1): 71-80.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1351) PDF downloads(387) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return