2019, 40(9): 1011-1024.
doi: 10.21656/1000-0887.390330
Abstract:
Owing to water evaporation, dry shrinkage, bleeding and inconsistent deformation between aggregates and mortar, cracks will inevitably occur in the interfacial transition zone between aggregates and mortar and significantly affect the cracking strength of concrete. From the viewpoint of meso-scopic mechanism, concrete is regarded as a 2-phase composite material of coarse aggregates and cement mortar, and the interfacial transition zone is considered as a contact layer in the analysis. Firstly, in view of the interaction between aggregate particles in concrete, the far-field external load on the representative volume element (RVE) of concrete was simplified as an equivalent load on an infinite matrix containing a single aggregate with the interaction direct derivative (IDD) method. Then the equivalent external load was transformed into principal stresses, and the stress intensity factor (SIF) of the interfacial arc crack was obtained based on the fracture mechanics theory. The compound power law was chosen to judge the cracking of concrete, and the variation law of the cracking strength of concrete was studied. In comparison with the FEM, the analytical SIF solution of the interfacial arc crack has verified validity. The parametric analysis results show that, the arc crack is most likely to open when it is perpendicular to the maximum principal stress or at an angle of 45° to the minimum principal stress. With the increase of the crack length, the tensile and compressive cracking strengths decrease first and then increase, and they both have the most unbeneficial crack lengths. The cracking strength increases with the aggregate volume fraction and decreases with the aggregate particle size. For a small crack length, increasing the elastic modulus of aggregates can improve the cracking strength. The cracking strength will increase in the case of the same-sign stresses around aggregates, and on the contrary, will decrease in the case of different-sign stresses.