Abstract: Aimed at the planar problem of 2D quasicrystals, the problem was transformed into one of symplectic eigenvalues and symplectic eigensolutions through introduction of the Hamiltonian system. In the Hamiltonian system, the solution to this problem was expressed by a series of symplectic eigensolutions...
Abstract: The lightweight structure design is a crucial consideration in the industrial field. Unlike passive structures that rely solely on material stiffness to resist external loads, active structures achieve lightweighting by active change of the internal force-driven deformation. An explicit topology opt...
Abstract: The flexoelectric fields' interactions between microholes of common defects in solid materials are studied. With the collocation mixed finite element method, the distributions of the stress, the strain gradient, and the flexoelectric field around the hole of the single hole and the double holes, res...
Abstract: The flexoelectric energy harvesters face such challenges as the monotonous energy harvesting mode, the low electromechanical coupling coefficient, the only prominent effect on microscales, and the limited energy conversion efficiency on macroscales. The electret, as a dielectric material with embedd...
Abstract: Porous dielectric metamaterials exhibit spatially non-uniform strain distribution due to internal pores with strain gradients particularly pronounced at the pore edges, leading to significant flexoelectric coupling effects. As a result, porous dielectric metamaterials represent a class of smart mate...
Abstract: Steel epoxy sleeves are widely used to repair oil and gas pipelines. The integrity of the epoxy layer between the sleeve and the pipeline directly determines the quality of the repair. Due to the unique sandwich structure formed by the sleeve, the epoxy layer, and the pipeline, traditional nondestru...
Abstract: The ferroelectric composite material with ferroelectric polymer as the matrix and ferroelectric ceramic as the filler overcomes the inverted relationship between high polarization strength and high breakdown strength of single-phase ferroelectric materials, exhibits excellent multi-field coupling pr...
Abstract: A phase-field model for the interfacial fracture of 2D decagonal quasicrystal (QC) bimaterials was proposed to predict the crack propagation path. Firstly, the discrete interface was transformed into a smeared interface through introduction of an interface phased field, and therefore the interface p...