Volume 45 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
LIU Yaohua, LI Jun, FENG Xiaoman, MA Jianhua, WANG Binglei. Study on the Electret Film Crumpling Deformation Theory and Flexoelectric-Like Responses[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1392-1404. doi: 10.21656/1000-0887.450195
Citation: LIU Yaohua, LI Jun, FENG Xiaoman, MA Jianhua, WANG Binglei. Study on the Electret Film Crumpling Deformation Theory and Flexoelectric-Like Responses[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1392-1404. doi: 10.21656/1000-0887.450195

Study on the Electret Film Crumpling Deformation Theory and Flexoelectric-Like Responses

doi: 10.21656/1000-0887.450195
  • Received Date: 2024-07-02
  • Rev Recd Date: 2024-08-19
  • Publish Date: 2024-11-01
  • The flexoelectric energy harvesters face such challenges as the monotonous energy harvesting mode, the low electromechanical coupling coefficient, the only prominent effect on microscales, and the limited energy conversion efficiency on macroscales. The electret, as a dielectric material with embedded charges, exhibits significant flexoelectric-like responses induced by non-uniform deformation. The crumpled film in complex bidirectional contraction, provides a novel efficient energy harvesting approach due to high strain gradients on macroscales. Herein the strong macroscopic electromechanical coupling properties of electrets were combined with the advantageous high strain gradients of crumpling, to establish a deformation theory for crumpled flexoelectret films. Based on this model, the flexoelectric-like responses and energy harvesting characteristics of crumpled flexoelectret films were analyzed for different charge densities, supporting cup radii, film thicknesses, and scales. The results indicate that, for a 1 mm thick flexoelectret film, the effective flexoelectric-like intensity is 2 orders higher than that of the intrinsic flexoelectric effect of the pure PDMS film, with the charge density q=-0.2 mC · m-2.
  • loading
  • [1]
    KRICHEN S, SHARMA P. Flexoelectricity: a perspective on an unusual electromechanical coupling[J]. Journal of Applied Mechanics, 2016, 83 (3): 030801. doi: 10.1115/1.4032378
    [2]
    AHMADPOOR F, SHARMA P. Flexoelectricity in two-dimensional crystalline and biological membranes[J]. Nanoscale, 2015, 7 (40): 16555-16570. doi: 10.1039/C5NR04722F
    [3]
    DENG Q, LIU L P, SHARMA P. Flexoelectricity in soft materials and biological membranes[J]. Journal of the Mechanics and Physics of Solids, 2014, 62 : 209-227. doi: 10.1016/j.jmps.2013.09.021
    [4]
    MA W H, CROSS L E. Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics[J]. Applied Physics Letters, 2001, 78 (19): 2920-2921. doi: 10.1063/1.1356444
    [5]
    MAO S, PUROHIT P K. Defects in flexoelectric solids[J]. Journal of the Mechanics and Physics of Solids, 2015, 84 : 95-115. doi: 10.1016/j.jmps.2015.07.013
    [6]
    MAO S, PUROHIT P K. Insights into flexoelectric solids from strain-gradient elasticity[J]. Journal of Applied Mechanics, 2014, 81 (8): 081004. doi: 10.1115/1.4027451
    [7]
    CATALAN G, LUBK A, VLOOSWIJK A H G, et al. Flexoelectric rotation of polarization in ferroelectric thin films[J]. Nature Materials, 2011, 10 (12): 963-967. doi: 10.1038/nmat3141
    [8]
    MAJDOUB M S, SHARMA P, ÇAGIN T. Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures[J]. Physical Review B, 2008, 78 (12): 121407. doi: 10.1103/PhysRevB.78.121407
    [9]
    YAN X, HUANG W B, KWON S R, et al. A sensor for the direct measurement of curvature based on flexoelectricity[J]. Smart Materials and Structures, 2013, 22 (8): 085016. doi: 10.1088/0964-1726/22/8/085016
    [10]
    YAN D Z, WANG J X, XIANG J W, et al. A flexoelectricity-enabled ultrahigh piezoelectric effect of a polymeric composite foam as a strain-gradient electric generator[J]. Science Advances, 2023, 9 (2): eadc8845. doi: 10.1126/sciadv.adc8845
    [11]
    WANG Z H, ZHANG X X, WANG X B, et al. Giant flexoelectric polarization in a micromachined ferroelectric diaphragm[J]. Advanced Functional Materials, 2013, 23 (1): 124-132. doi: 10.1002/adfm.201200839
    [12]
    BHASKAR U K, BANERJEE N, ABDOLLAHI A, et al. A flexoelectric microelectromechanical system on silicon[J]. Nature Nanotechnology, 2016, 11 (3): 263-266. doi: 10.1038/nnano.2015.260
    [13]
    ZHANG M Y, YAN D Z, WANG J X, et al. Ultrahigh flexoelectric effect of 3D interconnected porous polymers: modelling and verification[J]. Journal of the Mechanics and Physics of Solids, 2021, 151 : 104396. doi: 10.1016/j.jmps.2021.104396
    [14]
    QU Y L, JIN F, YANG J S. Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors[J]. Journal of Applied Physics, 2020, 127 (19): 194502. doi: 10.1063/5.0005124
    [15]
    PETROV A G. Flexoelectricity of model and living membranes[J]. Biochimica et Biophysica Acta (BBA): Biomembranes, 2002, 1561 (1): 1-25. doi: 10.1016/S0304-4157(01)00007-7
    [16]
    LIU L P, SHARMA P. Flexoelectricity and thermal fluctuations of lipid bilayer membranes: renormalization of flexoelectric, dielectric, and elastic properties[J]. Physical Review E, 2013, 87 (3): 032715.
    [17]
    LOBKOVSKY A, GENTGES S, LI H, et al. Scaling properties of stretching ridges in a crumpled elastic sheet[J]. Science, 1995, 270 (5241): 1482-1485. doi: 10.1126/science.270.5241.1482
    [18]
    KODALI P, SARAVANAVEL G, SAMBANDAN S. Crumpling for energy: modeling generated power from the crumpling of polymer piezoelectric foils for wearable electronics[J]. Flexible and Printed Electronics, 2017, 2 (3): 035005. doi: 10.1088/2058-8585/aa7be5
    [19]
    WANG B L, YANG S Y, SHARMA P. Flexoelectricity as a universal mechanism for energy harvesting from crumpling of thin sheets[J]. Physical Review B, 2019, 100 (3): 035438. doi: 10.1103/PhysRevB.100.035438
    [20]
    LIU Y, CHEN L L, WANG B L, et al. Tuning crumpled sheets for an enhanced flexoelectric response[J]. Journal of Applied Mechanics, 2022, 89 (1): 011011. doi: 10.1115/1.4052575
    [21]
    SHARMA N D, LANDIS C M, SHARMA P. Piezoelectric thin-film superlattices without using piezoelectric materials[J]. Journal of Applied Physics, 2010, 108 (2): 024304. doi: 10.1063/1.3443404
    [22]
    LIU Y, ZHAO S Y, WANG B L. Stronger flexoelectricity from the laminated film subjected to crumpling deformation[J]. Journal of Applied Physics, 2021, 130 (2): 024101. doi: 10.1063/5.0054131
    [23]
    RAHMATI A H, YANG S Y, BAUER S, et al. Nonlinear bending deformation of soft electrets and prospects for engineering flexoelectricity and transverse (d31) piezoelectricity[J]. Soft Matter, 2018, 15 (1): 127-148.
    [24]
    DARBANIYAN F, DAYAL K, LIU L P, et al. Designing soft pyroelectric and electrocaloric materials using electrets[J]. Soft Matter, 2019, 15 (2): 262-277. doi: 10.1039/C8SM02003E
    [25]
    WEN X, LI D F, TAN K, et al. Flexoelectret: an electret with a tunable flexoelectriclike response[J]. Physical Review Letters, 2019, 122 (14): 148001. doi: 10.1103/PhysRevLett.122.148001
    [26]
    CERDA E, MAHADEVAN L. Confined developable elastic surfaces: cylinders, cones and the elastica[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461 (2055): 671-700. doi: 10.1098/rspa.2004.1371
    [27]
    CERDA E, CHAIEB S, MELO F, et al. Conical dislocations in crumpling[J]. Nature, 1999, 401 : 46-49. doi: 10.1038/43395
    [28]
    CERDA E, MAHADEVAN L. Conical surfaces and crescent singularities in crumpled sheets[J]. Physical Review Letters, 1998, 80 (11): 2358-2361. doi: 10.1103/PhysRevLett.80.2358
    [29]
    SHARMA N D, MARANGANTI R, SHARMA P. On the possibility of piezoelectric nanocomposites without using piezoelectric materials[J]. Journal of the Mechanics and Physics of Solids, 2007, 55 (11): 2328-2350. doi: 10.1016/j.jmps.2007.03.016
    [30]
    DENG Q, KAMMOUN M, ERTURK A, et al. Nanoscale flexoelectric energy harvesting[J]. International Journal of Solids and Structures, 2014, 51 (18): 3218-3225. doi: 10.1016/j.ijsolstr.2014.05.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (120) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return