[1] |
王仁, 熊祝华, 黄文彬. 塑性力学基础[M]. 北京: 科学出版社, 1982.WANG Ren, XIONG Zhuhua, HAUNG Wenbin. Fundamentals of Plastic Mechanics[M]. Beijing: Science Press, 1982. (in Chinese)
|
[2] |
周喆, 秦伶俐, 黄文彬, 等. 有限变形下的等效应力和等效应变问题[J]. 应用数学和力学, 2004, 25(5): 542-550. http://www.applmathmech.cn/article/id/75ZHOU Zhe, QIN Lingli, HUANG Wenbin, et al. Effective stress and strain in finite deformation[J]. Applied Mathematics and Mechanics, 2004, 25(5): 542-550. (in Chinese) http://www.applmathmech.cn/article/id/75
|
[3] |
VERSHININ V V. A correct form of Bai-Wierzbicki plasticity model and its extension for strain rate and temperature dependence[J]. International Journal of Solids and Structures, 2017, 126: 150-162.
|
[4] |
POURHOSSEINI O, SHABANIMASHCOOL M. Development of an elasto-plastic constitutive model for intact rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 1-12. doi: 10.1016/j.ijrmms.2013.11.010
|
[5] |
张学言. 岩土塑性力学[M]. 北京: 人民交通出版社, 1993.ZHANG Xueyan. Geotechnics Plastic Mechanics[M]. Beijing: China Communications Press, 1993. (in Chinese)
|
[6] |
BRIDGMAN P W. Studies in Large Plastic Flow and Fracture: With Special Emphasis on the Effects of Hydrostatic Pressure[M]. Cambridge: Harvard University Press, 1964.
|
[7] |
ALGARNI M, GHAZALI S, ZWAWI M. The emerging of stress triaxiality and Lode angle in both solid and damage mechanics: a review[J]. Mechanics of Solids, 2021, 56(5): 787-806. doi: 10.3103/S0025654421050058
|
[8] |
STOUGHTON T B, YOON J W. A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming[J]. International Journal of Plasticity, 2004, 20(4/5): 705-731.
|
[9] |
ARETZ H. A consistent plasticity theory of incompressible and hydrostatic pressure sensitive metals[J]. Mechanics Research Communications, 2007, 34(4): 344-351. doi: 10.1016/j.mechrescom.2007.01.002
|
[10] |
BAI Y, WIERZBICKI T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity, 2008, 24(6): 1071-1096. doi: 10.1016/j.ijplas.2007.09.004
|
[11] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. doi: 10.1016/0013-7944(85)90052-9
|
[12] |
HAN Peihua, CHENG Peng, YUAN Shuai, et al. Characterization of ductile fracture criterion for API X80 pipeline steel based on a phenomenological approach[J]. Thin-Walled Structures, 2021, 164: 107254. doi: 10.1016/j.tws.2020.107254
|
[13] |
VERSHININ V V. Validation of metal plasticity and fracture models through numerical simulation of high velocity perforation[J]. International Journal of Solids and Structures, 2015, 67/68: 127-138. doi: 10.1016/j.ijsolstr.2015.04.007
|
[14] |
PAREDES M, WIERZBICKI T. On mechanical response of zircaloy-4 under a wider range of stress states: from uniaxial tension to uniaxial compression[J]. International Journal of Solids and Structures, 2020, 206: 198-223. doi: 10.1016/j.ijsolstr.2020.09.007
|
[15] |
BAI Yuanli, WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161(1): 1-20. doi: 10.1007/s10704-009-9422-8
|
[16] |
DA SILVA SANTOS I, SARZOSA D F B, PAREDES M. Ductile fracture modeling using the modified Mohr-Coulomb model coupled with a softening law for an ASTM A285 steel[J]. Thin-Walled Structures, 2022, 176: 109341. doi: 10.1016/j.tws.2022.109341
|
[17] |
GRANUM H, MORIN D, BØRVIK T, et al. Calibration of the modified Mohr-Coulomb fracture model by use of localization analyses for three tempers of an AA6016 aluminium alloy[J]. International Journal of Mechanical Sciences, 2021, 192: 106122. doi: 10.1016/j.ijmecsci.2020.106122
|
[18] |
ABAQUS Inc. ABAQUS Analysis User's Manual v[Z]. 2023.
|
[19] |
LI X X. Parametric study on numerical simulation of missile punching test using concrete damaged plasticity (CDP) model[J]. International Journal of Impact Engineering, 2020, 144: 103652. doi: 10.1016/j.ijimpeng.2020.103652
|
[20] |
CHEN W F. Constitutive Equations for Engineering Materials: Plasticity and Modeling[M]. New York: John Wiley & Sons Inc, 1994.
|
[21] |
赵亚溥. 近代连续介质力学[M]. 北京: 科学出版社, 2016.ZHAO Yapu. Modern Continuum Mechanics[M]. Beijing: Science Press, 2016. (in Chinese)
|