GENG Di. Infinitely Many Solutions of p-Laplacian Equations With Limit Sub-Critical Growth[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1223-1231.
Citation: GENG Di. Infinitely Many Solutions of p-Laplacian Equations With Limit Sub-Critical Growth[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1223-1231.

Infinitely Many Solutions of p-Laplacian Equations With Limit Sub-Critical Growth

  • Received Date: 2006-04-21
  • Rev Recd Date: 2007-07-30
  • Publish Date: 2007-10-15
  • A class of p-Laplacian boundary problem on a bounded smooth domain was discussed.The nonlinearity is odd symmetric and limit sub-critical gro wth at infinite.A sequence of critical values of the variational functional was constructed after the generalized Palais-Smale condition was verified.It is obtained that the problem possesses infinitely many solutions and corresponding energy levels of the functional pass to positive infinite.The result is a generalization of the similar problem in case of subcritical.
  • loading
  • [1]
    刘轼波,李树杰.一类超线性椭圆方程的无穷多解[J].数学学报,2003,46(4):625-630.
    [2]
    Garcia Azorero J P,Peral Alonso I.Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term[J].Trans Amer Math Soc,1991,323(2):877-895.
    [3]
    冉启康,方爱农.RN上临界增长的椭圆方程无穷多解的存在性[J].数学学报,2002,45(4):773-782.
    [4]
    Struwe M.Variational Methods[M].Beijing:Spriger-Verlag,1996.
    [5]
    Lion P L.The concentration-compactness principle in the calculus of Variation, the limit case[J].part 1,2.Rev Mat Iberoamericana,1985,1(1):145-201;1(2):45-121.
    [6]
    耿堤,杨舟.临界增长拟线性椭圆型方程中p-Laplace算子的弱连续性[J].华南师范大学学报, 2003,(3):10-13.
    [7]
    Costa D G,Miyagaki O H.Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains[J].J Math Anal Appl,1995,193(2):737-755. doi: 10.1006/jmaa.1995.1264
    [8]
    Brézis H,Nirenberg L.Remarks on finding critical points[J].Comm Pure Appl Math,1991,49(5):939-963.
    [9]
    Triebel H.Interpolation Theory, Function Spaces, Differential Operators[M].Amsterdam:North-Holland Pub Co,1978.
    [10]
    Suzuki T.Generalized distance and existence theorems in complete metric spaces[J].J Math Anal Applic,2001,253(2):440-458. doi: 10.1006/jmaa.2000.7151
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2682) PDF downloads(1205) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return