Citation: | SUN Wen-hua, SHENG Wan-cheng. Two Dimensional Non-Selfsimilar Initial Value Problem for Adhesion Particle Dynamics[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1063-1070. |
[1] |
Weinan E,Guo Y Rykov,Sinai Ya G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics[J].Comm Phys Math,1996,177:349-380. doi: 10.1007/BF02101897
|
[2] |
Shandarin F,Zeldovich Ya B.The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitation medium[J].Reviews of Modern Physics,1989,61(2):185-220. doi: 10.1103/RevModPhys.61.185
|
[3] |
李荫藩.第二阶“大粒子”差分法[J].中国科学A辑,1985,28(8):729-739.
|
[4] |
Sheng W, Zhang T. The Riemann problem for transportation equation in gas dynamics[J].Mem Amer Math Soc,1999,137(654):1-77.
|
[5] |
Li J,Yang S, Zhang T.The Two-Dimensional Riemann Problem in Gas Dynamics[M].Harlow:Longman Scientific and Technical,1998.
|
[6] |
Korchinski D J.Solutions of a Riemann Problem for a 2× 2 System of Conservation Laws Possessing Classical Solutions[D].New York:Adelphi University Thesis,1977.
|
[7] |
Floch Le P.An existence and uniqueness result for two nonstrictly hyperbolic systems[A].In:“Nonlinear Evolution Equations That Change Type,”IMA Volumes in Mathematics and Its Applications[C].New York/Berlin:Springer-Verlag,1990,27.
|
[8] |
Tan D, Zhang T, Zheng Y. Delta-shock waves as limits of vanishing viscosity for hyperbolic system of conservation laws[J].J Differential Equations,1994,112(1):1-32. doi: 10.1006/jdeq.1994.1093
|
[9] |
Yang H, Sun W. The Riemann problem with delta initial data for a class of coupled hyperbolic systems of conservation laws[J].Nonlinear Analysis,2006, doi: 10.1016/j.na.2006.09.057.
|
[10] |
Lax P D.Hyperbolic systems of conservation laws and the mathematical theory of shock waves[A].Conf Board Math Sci[C].Philadelphia:SLAM,1973,11.
|
[11] |
Yang H. Generalized plane delta-shock waves for n-dimensional zero-pressure gas dynamics[J].J Math Anal and Appl,2001,260(1):18-35. doi: 10.1006/jmaa.2000.7426
|
[12] |
Yang X. Research announcements: Un-selfsimilar elementary wave and global solutions of a class of multi-dimensional conservation laws[J].Advances in Mathematics (China),2005,34(3): 367-369.
|
[13] |
杨小舟, 黄飞敏.简化Euler方程的二维Riemann问题[J].科学通报,1998,43(6):441-444.
|
[14] |
Yang X. Mulit-dimensional Riemann problem of scalar conservation laws[J].Acta Mathematica Scientia,1999,19(2):190-200.
|
[15] |
Yang X. The Singular structure of Non-selfsimilar global n dimensional burgers equation[J].Acta Mathematicae Applicatae Sinica(English Series),2005,21(3),505-518.
|
[16] |
Huang F,Wang Z.Well posedness for pressureless flow[J].Comm Math Phys,2001,222(1):117-146. doi: 10.1007/s002200100506
|
[17] |
Li J, Zhang T. Generalized Rankine-Hugoniot relations of delta-shocks in solutions of transportation equations[A].Advances in Nonlinear Partial Differential Equations and Related Area[C].Singapore:World Sci Publ,River Edge, NJ, 1998, 219-232.
|
[18] |
Li J, Li W. Riemann problem for the zero-pressure flow in gas dynamics[J].Progr Natur Sci,2001,11(5):331-344.
|