LI Nan-sheng, REN Kui-sheng, SHA De-song. Reduced Projection Augmented Lagrange Bi-Conjugate Gradient Method for Contact and Impact Problems[J]. Applied Mathematics and Mechanics, 2007, 28(8): 983-990.
Citation: LI Nan-sheng, REN Kui-sheng, SHA De-song. Reduced Projection Augmented Lagrange Bi-Conjugate Gradient Method for Contact and Impact Problems[J]. Applied Mathematics and Mechanics, 2007, 28(8): 983-990.

Reduced Projection Augmented Lagrange Bi-Conjugate Gradient Method for Contact and Impact Problems

  • Received Date: 2006-10-12
  • Rev Recd Date: 2007-06-07
  • Publish Date: 2007-08-15
  • Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems,a reduced projection augmented Lagrange bi-conjugate gradient method was proposed for contact and impact problems by translating non-linear complementary conditions into-equivalent formulation of non-linear programming.For contact-impact problems,a larger time-step can be adopted arriving at numerical convergence compared with penalty method.By establishment of the impact-contact formulations which are equivalent with original non-linear complementary conditions,a reduced projection augmented Lagrange bi-conjugate gradient method is deduced to improve precision and efficiency of numerical solutions.A numerical example shows that the algorithm suggested is valid and exact.
  • loading
  • [1]
    ZHONG Zhi-hua.Finite Element Procedures for Contact-Impact Problems[M].Oxford: Oxford University Press, 1993.
    [2]
    Kikuchi N,Oden J T.Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods[M].Philadelphia:SIAM,1988.
    [3]
    Babuska I. The finite element method with penalty[J].Math Comp,1973,27(122):221-228.
    [4]
    Irons B M, Draper K J.Lagrange multiplier techniques in structural analysis[J].AIAA J,1965,3(6)1172-1174.
    [5]
    SHA De-song, Tamma K K,LI Mao-cheng. Robust explicit computational developments and solution strategies for impact problems involving friction[J].Internat J Numer Methods Engrg,1996,39(5):721-739. doi: 10.1002/(SICI)1097-0207(19960315)39:5<721::AID-NME865>3.0.CO;2-J
    [6]
    李南生,沙德松, 孙焕纯,等. 冲击接触问题增广Lagranian双共轭梯度法[J].固体力学学报,1999,20(1):46-61.
    [7]
    李南生,许强,李尧臣,等.粘塑性介质率本构方程的广义序列积分解法[J].同济大学学报,2002,30(9):1073-1077.
    [8]
    Simo J C, Govindjee S.Non-linear B-stability and symmetry preserving return mapping algorithms for plasticity and viscoplasticity[J].Internat J Numer Methods Engrg,1991,31(1):151-176. doi: 10.1002/nme.1620310109
    [9]
    韩继业, 修乃华, 戚厚铎.非线性互补理论与算法[M].上海:上海科学技术出版社,2006.
    [10]
    赵凤治,尉继英.约束最优化计算方法[M].北京:科学出版社,1991.
    [11]
    李南生,沙德松,周晶.一类基于点-面模式的低阶单元接触搜索方法[J].力学季刊,2000,21(1):139-143.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2901) PDF downloads(769) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return