Citation: | TANG Qiong, CHEN Chuan-miao. Continuous Finite Element Methods of Hamilton Systems[J]. Applied Mathematics and Mechanics, 2007, 28(8): 958-966. |
[1] |
冯康. 冯康文集[M].北京:国防工业出版社,1995,1-185.
|
[2] |
冯康,秦孟兆. 哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003,1-386.
|
[3] |
Sanz-Serna J M.Runge-Kutta schemes for Hamiltonian systems[J].BIT,1988,28:877-883. doi: 10.1007/BF01954907
|
[4] |
Aubry A, Chartier P.Pseudo-symplectic Runge-Kutta methods[J].BIT,1997,37:1-21. doi: 10.1007/BF02510168
|
[5] |
Gonzalez O, Simo J C.On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry[J].Computer Methods in Applied Mechanics and Engineering,1996,134:197-222. doi: 10.1016/0045-7825(96)01009-2
|
[6] |
Kane C, Marsde J E, Ortiz M. Symplectic-energy-momentum preserving variational integrators[J].J Math Phys,1999,40:3353-3371. doi: 10.1063/1.532892
|
[7] |
Bridges T J, Reich S.Multisymplectic intergrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity[J].Physics Letters A,2001,284:184-193. doi: 10.1016/S0375-9601(01)00294-8
|
[8] |
陈传淼,黄云清.有限元高精度理论[M].长沙:湖南科技出版社,1995,197-227.
|
[9] |
陈传淼.有限元超收敛构造理论[M].长沙:湖南科技出版社,2001,19-225.
|
[10] |
杨禄源,汤琼.常微方程初值问题连续有限元的超收敛性[J].高等学校计算数学学报,2004,26(1):91-96.
|
[11] |
李延欣,丁培柱,吴承埙,等.A2B模型分子经典轨迹的辛算法计算[J].高等学校化学学报,1995,15(8):1181-1186.
|
[12] |
季江微,廖新浩,刘林.辛差分格式的守恒量及其稳定性[J].计算物理,1997,14(1):68-74.
|