FENG Da-he, LI Ji-bin. Bifurcations of Travelling Wave Solutions for Jaulent-Miodek Equations[J]. Applied Mathematics and Mechanics, 2007, 28(8): 894-900.
Citation:
FENG Da-he, LI Ji-bin. Bifurcations of Travelling Wave Solutions for Jaulent-Miodek Equations[J]. Applied Mathematics and Mechanics, 2007, 28(8): 894-900.
FENG Da-he, LI Ji-bin. Bifurcations of Travelling Wave Solutions for Jaulent-Miodek Equations[J]. Applied Mathematics and Mechanics, 2007, 28(8): 894-900.
Citation:
FENG Da-he, LI Ji-bin. Bifurcations of Travelling Wave Solutions for Jaulent-Miodek Equations[J]. Applied Mathematics and Mechanics, 2007, 28(8): 894-900.
By using the theory of bifurcations of planar dynamical systems to the coupled Jaulent-Miodek equations,the existence of smooth solitary travelling wave solutions and uncountably infinite many smooth periodic travelling wave solutions is studied and the bifurcation parametric sets are shown.Under the given parametric conditions,all possible representations of explicit exact solitary wave solutions and periodic wave solutions are obtained.
Jaulent M, Miodek I.Nonlinear evolution equations associated with energy dependent Schrdinger potentials[J].Lett Math Phys,1976,1(3):243-250. doi: 10.1007/BF00417611
[2]
FAN En-gui. Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics[J].Chaos, Solitons and Fractals,2003,16(5):819-839. doi: 10.1016/S0960-0779(02)00472-1
[3]
Chow S N, Hale J K.Method of Bifurcation Theory[M].New York: Springer-Verlag,1981.
[4]
Guckenheimer J, Holmes P J.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[M].New York: Springer-Verlag,1983.
[5]
LI Ji-bin. Solitary and periodic travelling wave solutions in Klein-Gordon-Schrdinger equation[J].Journal of Yunnan University,2003,25(3):176-180.