Citation: | WANG Ping, TANG Shao-qiang. Numerical Study of Dynamic Phase Transitions in Shock Tube[J]. Applied Mathematics and Mechanics, 2007, 28(7): 824-832. |
[1] |
Baker G A.Quantitative Theory of Critical Phenomena[M].San Diego:Academic Press,1990.
|
[2] |
Hsieh Dinyu,TANG Shao-qiang,WANG Xiao-ping.On hydrodynamic instabilities, chaos and phase transition[J].Acta Mech Sinica,1996,12(1):1-14.
|
[3] |
Shu C W. A numerical method for systems of conservation laws of mixed type admitting hyperbolic flux splitting[J].J Comp Phys,1992,2(100):424-429.
|
[4] |
Hsieh Dinyu,WANG Xiao-ping.Phase transition in van der waals fluid[J].SIAM J Appl Math,1997,57(4):871-892. doi: 10.1137/S0036139995295165
|
[5] |
Slemrod M.Admissibility criteria for propagating phase boundaries in a van der Waals fluid[J].Arch Rat Mech Anal,1983,4(81):301-315.
|
[6] |
JIN Sin,XIN Zhou-ping.The relaxation schemes for systems of conservation laws in arbitrary space dimensions[J].Comm Pure Appl Math,1995,48(3):235-278. doi: 10.1002/cpa.3160480303
|
[7] |
Natalini R,TANG Shao-qiang. Discrete kinetic models for dynamic phase transitions[J].Comm Appl Nonlinear Anal,2000,7(2):1-32.
|
[8] |
TANG Shao-qiang, WANG Ping. Pattern formation in dynamic phase transitions[J].Chin Phy Lett,2004,21(8):1566-1568. doi: 10.1088/0256-307X/21/8/043
|
[9] |
TANG Shao-qiang,ZHAO Hui-jiang.Stability of Suliciu model for phase transitions[J].Comm Pure Appl Anal,2004,3(4):545-556. doi: 10.3934/cpaa.2004.3.545
|
[10] |
王平,唐少强.松驰模型中液气共存平衡态[J].应用数学和力学,2005,26(6):707-713.
|
[11] |
Fornberg B, Witham G B.A numerical and theoretical study of certain nonlinear wave phenomena[J].Philos trans Roy Soc London Ser A,1978,289:373-404. doi: 10.1098/rsta.1978.0064
|