Citation: | LUO Zhen-dong, MAO Yun-kui, ZHU Jiang. Petrov-Galerkin Least Squares Mixed Element Method for the Stationary Incompressible Magnetohydrodynamics[J]. Applied Mathematics and Mechanics, 2007, 28(3): 359-368. |
[1] |
Jackson J D.Classical Electrodynamics[M].New York: Wiley,1975.
|
[2] |
Gunzburger M D, Meir A J, Peterson J S.On the existence, uniqueness, and finite element approximation of solution of the equation of stationary, incompressible magnetohydrodynamics[J].Mathematics of Computation,1991,56(194):523-563. doi: 10.1090/S0025-5718-1991-1066834-0
|
[3] |
Wiedmer M. Finite element approximation for equation of magnetohydrodynamics[J]. Mathematics of Computation,2000,69(229):83-101.
|
[4] |
Girault V,Raviart P A.Finite Element Methods for Navier-Stokes Equations,Theory and Algorithms[M].Berlin: Springer-Verlag,1986.
|
[5] |
Temam R.Navier-Stokes Equation[M].Amsterdam: North-holland, 1984.
|
[6] |
France L P,Hughes T J. Two classes of mixed finite element methods[J].Computer Methods in Applied Mechanics and Engineering,1988,69(1):89-129. doi: 10.1016/0045-7825(88)90168-5
|
[7] |
Hughes T J, France L P, Balestra M. A new finite element formulation for computational fluid dynamics, V.Circumventing the Babuka-Brezzi condition: A stable Petrov-Galerkin formulations of stokes problem accommodating equal-order interpolation[J].Computer Methods in Applied Mechanics and Engineering,1986,59(1):85-99. doi: 10.1016/0045-7825(86)90025-3
|
[8] |
Hughes T J, France L P.A new finite element formulation for computational fluid dynamics, VII. The stokes problem with various well posed boundary condition, symmetric formulations that converge for all velocity pressure space[J].Computer Methods in Applied Mechanics and Engineering,1987,65(2): 85-96. doi: 10.1016/0045-7825(87)90184-8
|
[9] |
Brezzi F, Douglas Jr J. Stabilized mixed method for the Stokes problem[J]. Numerische Mathematik,1988,53(2):225-235. doi: 10.1007/BF01395886
|
[10] |
Douglas Jr J,Wang J P. An absolutely stabilized finite element method for the Stokes problem[J]. Math Comp,1989,52(186):495-508. doi: 10.1090/S0025-5718-1989-0958871-X
|
[11] |
Hughes T J, Tezduyar T E. Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equation[J].Computer Methods in Applied Mechanics and Engineering,1984,45(3):217-284. doi: 10.1016/0045-7825(84)90157-9
|
[12] |
Johson C, Saranen J. Streamline diffusion methods for the incompressible Euler and Navier-Stokes equation[J].Mathematics of Computation,1986,47(175):1-18. doi: 10.1090/S0025-5718-1986-0842120-4
|
[13] |
Ciarlet P G.The Finite Element Method for Elliptic Problem[M].Amsterdam:North-Holland, 1978.
|
[14] |
罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社, 2006.
|
[15] |
Zhou T X, Feng M F. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J].Mathematics of Computation,1993,60(202):531-543. doi: 10.1090/S0025-5718-1993-1164127-6
|