YAN Xiang-ping, LI Wan-tong. Global Asymptotic Stability for Hopfield-Type Neural Networks With Diffusion Effects[J]. Applied Mathematics and Mechanics, 2007, 28(3): 328-334.
Citation: YAN Xiang-ping, LI Wan-tong. Global Asymptotic Stability for Hopfield-Type Neural Networks With Diffusion Effects[J]. Applied Mathematics and Mechanics, 2007, 28(3): 328-334.

Global Asymptotic Stability for Hopfield-Type Neural Networks With Diffusion Effects

  • Received Date: 2006-09-18
  • Rev Recd Date: 2006-12-31
  • Publish Date: 2007-03-15
  • The existence,uniqueness and global asymptotic stability of the equilibrium for Hopfield-type neural networks with diffusion were discussed.The sufficient conditions of the existence and uniqueness of the equilibrium of the system were obtained by applying the topological degree theory when the activation functions are monotonous non-decreasing and differential,and the interconnected matrix is related to the Lianupov diagonal stable matrix.By constructing the average Liapunov functions,the global asymptotic stability of the equilibrium of the system was obtained.
  • loading
  • [1]
    Hopfield J J.Neural networks and physical systems with emergent collective computional abilities[J].Proc Natl Acda Sci USA,1982,79(2):2554-2558. doi: 10.1073/pnas.79.8.2554
    [2]
    Hopfield J J. Neurons with graded response have collective computional properties like those of two-state neurons[J].Proc NatlAcda Sci USA,1984,81(10):3088-3092. doi: 10.1073/pnas.81.10.3088
    [3]
    廖晓昕.Hopfield神经网络的稳定性[J].中国科学(A集),1993,23(10):1032-1035.
    [4]
    梁学斌,吴立德 .Hopfield型神经网络的全局指数稳定性及应用[J].中国科学(A集),1995,25(5):523-532.
    [5]
    Forti M, Tesi A. New conditions for global stability of neural networks with application to linear and quadratic programming problems[J].IEEE Trans Circuits Systems,1995,42(7):354-366. doi: 10.1109/81.401145
    [6]
    LIANG Xue-bin,WU Li-de.Comment on “New conditions for global stability of neural networks with application to linear and quadratic programming problems”[J].IEEE Trans Circuits Systems,1997,44(1):1099-1101. doi: 10.1109/81.641813
    [7]
    LIANG Xue-bin,WANG Jun.Absolute exponential stability of neural networks with a general class of activation functions[J].IEEE Trans Circuits Systems,2000,47(8):1258-1263. doi: 10.1109/81.873882
    [8]
    HE Qi-ming,KANG Li-shan.Existence and stability of global solution for generalized Hopfield neural networks[J].Neural Parallel & Scientific Computations,1994,2(2):165-176.
    [9]
    Carpenter G A. A Geometric approach to singular perturbation to never impulse equations[J].J Differential Equations,1977,23(3):355-367.
    [10]
    Evans J W. Nerve axon egus II: Stability at rest[J].Indian Univ Math J,1972,22(1):75-90. doi: 10.1512/iumj.1972.22.22009
    [11]
    廖晓昕,杨叔子,程时杰,等.具有反应扩散的广义神经网络的稳定性[J].中国科学(E集),2002,32(1):88-94.
    [12]
    CAO Jin-de,WANG Jun.Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation and time delays[J].Nueral Networks,2004,17(3):379-390. doi: 10.1016/j.neunet.2003.08.007
    [13]
    郭大钧,孙经先,刘兆理. 非线性常微分方程的泛函方法[M].济南: 山东科技出版社,1995.
    [14]
    胡适耕. 非线性分析和方法[M]. 武汉: 华中理工大学出版社,1996.
    [15]
    郭大钧. 非线性泛函分析[M]. 济南: 山东科技出版社,2002.
    [16]
    Fiedler M.Special Matrices and Their Applications in Numerical Mathematics[M].Dordrecht:Martinus Nijhoff,1986.
    [17]
    Horn R A,Johnson C R.Topics in Matrix Analysis[M].Cambridge:Cambridge University Press,1991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3105) PDF downloads(830) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return