SHI Pei-hu, WANG Ming-xin. Self-Similar Singular Solution of Fast Diffusion Equation With Gradient Absorption Terms[J]. Applied Mathematics and Mechanics, 2007, 28(1): 99-106.
Citation: SHI Pei-hu, WANG Ming-xin. Self-Similar Singular Solution of Fast Diffusion Equation With Gradient Absorption Terms[J]. Applied Mathematics and Mechanics, 2007, 28(1): 99-106.

Self-Similar Singular Solution of Fast Diffusion Equation With Gradient Absorption Terms

  • Received Date: 2004-05-28
  • Rev Recd Date: 2006-10-09
  • Publish Date: 2007-01-15
  • The self-similar singular solution of the fast diffusion equation with nonlinear gradient absorption terms had been studied. By a self-similar transformation, the self-similar solutions satisfy a boundary value problem of nonlinear ODE. Using the shooting arguments, the existence and uniqueness of the solution to the initial data problem of the nonlinear ODE had been investigated, the solutions are classified by the region of the initial data. The necessary and sufficient condition for the existence and uniqueness of self-similar very singular solutions is obtained by the investigation of the classification of the solutions. In case of existence, the self-similar singular solution is very singular solution.
  • loading
  • [1]
    Kardar M,Parisi G,Zhang Y C.Dynamic scaling of growing interface[J].Phys Rev Lett,1986,56(9):889-892. doi: 10.1103/PhysRevLett.56.889
    [2]
    Krug J,Spohn H.Universisality classes for deterministic surface growth[J].Phys Rev A,1988,38(8):4271-4283. doi: 10.1103/PhysRevA.38.4271
    [3]
    Bebachour S,Laurenot Ph.Very singular solutions to a nonliear parabolic equation with absorption. I. Existence[J].Proc the Royal Soc Edinberg,2001,131(A)(1):27-44. doi: 10.1017/S0308210500000779
    [4]
    QI Yuan-wei,WANG Ming-xin.The self-similar profiles of generalized KPZ equation[J].Pacific J of Math,2001,201(1):223-240. doi: 10.2140/pjm.2001.201.223
    [5]
    Brezis H,Friedman A.Nonlinear parabolic equation involving measures as initial conditions[J].J Math Pures Appl,1983,62(1):73-97.
    [6]
    Brezis H,Peletier L A,Terman D.A very singular solution of the heat equation with absorption[J].Arch Rational Mech Anal,1986,95(3):185-209.
    [7]
    CHEN Xin-fu,QI Yuan-wei,WANG Ming-xin.Self-similar singular solution of a p-Laplacian evolution[J].J Differential Equations,2003,190(1):1-15. doi: 10.1016/S0022-0396(02)00039-6
    [8]
    Kamin S,Vazquez J L.Singular solutions of some nonlinear parabolic equation[J].J Anal Math,1992,59(1):51-74. doi: 10.1007/BF02790217
    [9]
    Leoni G.A very singular solution for the porous media equation ut=Δ(um)-up when 0<m<1[J].J Diff Eqns,1996,132(2):353-376. doi: 10.1006/jdeq.1996.0184
    [10]
    Peletier L A,WANG Jun-yu.A very singular solution of a quasilinear degenerate diffusion equation with absorption[J].Trans Amer Math Soc,1988,307(2):813-826. doi: 10.1090/S0002-9947-1988-0940229-6
    [11]
    CHEN Xin-fu,QI Yuan-wei,WANG Ming-xin.Long time behavior of solutions to p-Laplacian equation with absorption[J].SIAM J Appl Math,2003,35(1):123-134. doi: 10.1137/S0036141002407727
    [12]
    Escobedo M,Kavian O,Matano H.Large time behavior of solutions of a dissipative semilinesr heat equation[J].Commun Partial Diff Eqns,1995,20(8):1427-1452. doi: 10.1080/03605309508821138
    [13]
    Herraiz L.Asymptotic behaviour of solutions of some semilinear parabolic problems[J].Ann Inst Henri Poicaré,1999,16(1):49-104.
    [14]
    Kwak M.A porous media equation with absorption I. Long time behaviour[J].J Math Anal & Appl,1998,223(1):96-110.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2660) PDF downloads(666) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return