Ayhan Tutar, Ayhan Sarioglugil. Relaxed Elastic Lines of Second Kind on an Oriented Surface in Minkowski Space[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1297-1304.
Citation: Ayhan Tutar, Ayhan Sarioglugil. Relaxed Elastic Lines of Second Kind on an Oriented Surface in Minkowski Space[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1297-1304.

Relaxed Elastic Lines of Second Kind on an Oriented Surface in Minkowski Space

  • Received Date: 2005-11-18
  • Rev Recd Date: 2006-07-07
  • Publish Date: 2006-11-15
  • The relaxed elastic line of second kind on an or iented surface in the Minkowski space was defined and for the relaxed elastic line of second kind which was lying on an oriented surface the Euler-Lagr ange equations were derived.Further more,whether these curve lie on a curvature line or not is investigated and some applications are given.
  • loading
  • [1]
    Landau L D,Lifshitz E M.Theory of Elasticity[M].Oxford:Pergamon Press,1979,84.
    [2]
    Manning G S.Relaxed elastic line on a curved surfaces[J].Quarterly of Applied Mathematics,1987,XLV(3):515—527.
    [3]
    Nickerson H K,Manning G S.Intrinsic equations for an relaxed elastic line on a oriented surface[J].Geometriae Dedicata,1988,27:127—136.
    [4]
    Weinstock R.Calculus on Variations[M].New York:Dover,1974,16—48.
    [5]
    nan Z, Ylmaz M.Elastic lines of second kind on an oriented surface[J].Ondokuz Mays niv Fen Dergisi,1997,8(1):1—10.
    [6]
    Hilbert D,Cohn-Vossen S.Geometry and the Imagination[M].New York:Chelsea,1952,172—248.
    [7]
    Weinstein T.An Introduction to Lorentz Surfaces[M].New York:Walter de Gruyter,1966,149—151.
    [8]
    Ekici C.Yar-?klidyen Uzaylarda Genelletirilmi Yar-Regle Yüzeyler[D].Ph D Dissertation.Osmangazi niversitesi,1998,95—96.(in Turkish)
    [9]
    Tutar A.IL3 Lorentz Uzaynda Küresel e[KG-*3]. griler ve Joachimsthal Teoremi[D].Ph D Dissertation, Ondokuz Mays niversitesi,1994,36—37.(in Turkish)
    [10]
    O'Neill B.Elemantary Differential Geometry[M].New York:Academic Press,1966,196—214.
    [11]
    Hsiung C C.A First Course in Differential Geometry[M].New York:John Wiley & Sons,1981,207—210.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2715) PDF downloads(450) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return