ZENG Zhuo-xiong, ZHOU Li-xing, LIU Zhi-he. Second-Order Moment Model for Dense Two-Phase Turbulent Flow of Bingham Fluid With Particles[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1202-1210.
Citation: ZENG Zhuo-xiong, ZHOU Li-xing, LIU Zhi-he. Second-Order Moment Model for Dense Two-Phase Turbulent Flow of Bingham Fluid With Particles[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1202-1210.

Second-Order Moment Model for Dense Two-Phase Turbulent Flow of Bingham Fluid With Particles

  • Received Date: 2004-06-17
  • Rev Recd Date: 2006-07-02
  • Publish Date: 2006-10-15
  • The USM-theta model of Bingham fluid for dense two-phase tur bulent flow is developed, which combines the unified second-order moment model for two-phase tur bulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extraterm of Bingham fluid yield stress were taken into account. An algorithm for second-order moment model in dense two-phase flow was proposed, in which the influence of particle volume fraction was accounted for. This model was used to simulate turbulent flow of single-phase and dense two-phase in pipe, it is shown the USM-theta model has better prediction result than five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while tur bulence of both phases is simulated by the two-equation tur bulence model. The USM-theta model was also used to simulate the dense two-phase turbulent flow of Bingham fluid with particles. With the incre asing of the yield stress, the velocities of Bingham and particle decre ase near the pipe centre, comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.
  • loading
  • [1]
    Tchen C M.Mean value and correlation problems connected with the motion of small particles in a turbulent field[D].Hague, Martinus Nijhoff:Delft University, 1947.
    [2]
    Hinze J O.Turbulence[M].New York:McGraw Hill,1975.
    [3]
    Zhou L X,Huang X Q.Prediction of confined gas-particle jets by an energy equation model of particle turbulence[J].Science in China,1990,33:53—59.
    [4]
    Gidaspow D.Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M].New York: Academic Press, 1994.
    [5]
    Cheng Y,Guo Y C,Wei F,et al.Modeling the hydrodynamics of downer reactors based on kinetic theory[J].Chem Eng Sci,1999,54(13/14):2019—2027. doi: 10.1016/S0009-2509(98)00293-0
    [6]
    Zheng Y,Wan X T,Qian Z,et al.Numerical simulation of the gas-particle turbulent flow in riser reactor based on kf-εf-kp-εp-θ two-fluid model[J].Chem Eng Sci,2001,56(24):6813—6822. doi: 10.1016/S0009-2509(01)00319-0
    [7]
    Yu Y,Zhou L X,Zheng C G,et al.Simulation of swirling gas-particle flows using different time scales for the closure of two-phase velocity correlation in the second-order moment two-phase turbulence model[J].Transactions of ASME, Journal of Fluids Engineering,2003,125(2):247—250. doi: 10.1115/1.1538630
    [8]
    于勇.两相流动气体湍流变动模型和稠密两相湍流模型的研究[D].北京:清华大学工程力学系,2004.
    [9]
    胡春波,尚莲英,蔡体敏.宾汉流体湍流流动的理论研究[J].西北工业大学学报,1998,16(4):589—592.
    [10]
    胡春波,魏进家,姜培正,等.直圆管突扩通道内宾汉流体湍流流场的数值研究[J].应用数学和力学,1998,19(11):1015—1020.
    [11]
    胡春波,姜培正,魏进家.离心泵叶轮内宾汉流体湍流流场的数值模拟[J]. 应用力学学报,1999,16(2):104—107.
    [12]
    Salvi R. On the existence of two phase problem for Bingham fluids[J].Nonlinear Analysis,2001,47(6):4205—4216. doi: 10.1016/S0362-546X(01)00537-5
    [13]
    Dziubinski M, Fidos H, Sosno M.The flow pattern map of a two-phase non-Newtonian liquid-gas flow in the vertical pipe[J].Internat J Multiphase Flow,2004,30(6):551—563. doi: 10.1016/j.ijmultiphaseflow.2004.04.005
    [14]
    Fidos H.Flow hydrodynamics of multiphase mixtures of non-Newtonian liquid-gas-solid particles in vertical pipes[D]. Poland:Lodz Technical University,2001.
    [15]
    亢力强,曾卓雄,姜培正.宾汉流体与颗粒间的密相两相湍流研究[J].西安交通大学学报,2002,36(7):693—696.
    [16]
    亢力强. 非牛顿流体与颗粒间的密相两相湍流的理论分析和数值计算[D].西安:西安交通大学,2000.
    [17]
    Zeng Z X,Xie Y B,Jiang Sh T. Numerical simulation on dense two-phase turbulent flow of Bingham fluid with particle[A]. In: Zhou L X,Ed.The Second International Symposium on Multiphase, Non-Newtonian and Reacting Flows'04[C].China: International Academic Publishers/ Beijing World Publishing Corporation, 2004, 427—429.
    [18]
    周力行.多相湍流反应流体力学[M]. 北京:国防工业出版社,2002.
    [19]
    Zhou L X,Xu Y,Fan L S,et al. Simulation of swirling gas-particle flows using an improved second-order moment two-phase turbulence model[J].Powder Tech,2001,116(3):178—189. doi: 10.1016/S0032-5910(00)00396-X
    [20]
    姜培正,魏进家,王长安. 浓密液固两相流动的数值研究与理论分析[J].西安交通大学学报,1998,32(4):84—88.
    [21]
    陈立.高含沙圆管流的紊动强度分布[J]. 水动力学研究与进展,1993,8(12):526—534.
    [22]
    Van Doormaal J P, Raithby G D. Enhancements of the SIMPLE method for predicting incompressible fluid flows[J].Numerical Heat Transfer,1984,7:147—163.
    [23]
    Alajbegovic A,Assad A, Benetto F. Phase distribution and turbulence structure for solid/fluid upflow in a pipe[J].Internat J Multiphase Flow,1994,20(3):453—479. doi: 10.1016/0301-9322(94)90021-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2815) PDF downloads(500) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return