LIU Xiao-li, WANG Si-jing, WANG En-zhi, XUE Qiang. Double-Medium Constitutive Model of Geological Material in Uniaxial Tension and Compression[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1193-1201.
Citation: LIU Xiao-li, WANG Si-jing, WANG En-zhi, XUE Qiang. Double-Medium Constitutive Model of Geological Material in Uniaxial Tension and Compression[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1193-1201.

Double-Medium Constitutive Model of Geological Material in Uniaxial Tension and Compression

  • Received Date: 2005-04-05
  • Rev Recd Date: 2006-06-03
  • Publish Date: 2006-10-15
  • Based on elasto-plasticity and damage mechanics, a double-medium constitutive model of geological material under uniaxial tension and compression was presented, on the assumption that rock and soil materials being pore-fracture double-medium, and porous medium occurring no damage, while fracture medium occurring damage with load. To the implicit equation of the model, iterative method was adopted to obtain the complete stress-strain curve of the material. The result shows that many different distributions (uniform distribution, concentrated distribution and random distribution) of fractures in rock and soil material are the essential reasons of the daedal constitutive relations. By the reason that the double-medium constitutive model separating the material to be porous medium part, which is the main body of elasticity, and fracture medium part, which is the main body of damage, it is of important practical values and theoretical meanings to the study on failure of rock and soil or materials containing damage.
  • loading
  • [1]
    仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [2]
    刘晓丽.水、气二相渗流与双重介质变形的流固耦合数学模型[D].硕士论文.辽宁 阜新:辽宁工程技术大学,2004.[JP3]. Okubo S, Fukui K. Complete stress-strain curves for various rock types in uniaxial tension[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1996,33(6):549—556.
    [4]
    周小平,张永兴,朱可善.单轴拉伸条件下细观非均匀性岩石本构关系研究[J].土木工程学报,2005,38(3):87—93.
    [5]
    沈新普,沈国晓,陈立新.用于应变局部化行为分析的弹塑性损伤耦合本构研究[J].应用数学和力学,2004,25(12):1249—1256.
    [6]
    李海波,赵坚,李俊儒,等.基于裂纹扩展能量平衡的花岗岩动态本构模型研究[J].岩石力学与工程学报,2003,22(10):1683—1688.
    [7]
    Kemeny J, Cook N G W.Effective moduli, non-linear deformation and strength of a cracked elastic solid[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1986,23(2):107—118.
    [8]
    章根德.地质材料本构模型的最近进展[J].力学进展,1994,24(3):374—385.
    [9]
    Jaeger J C, Cook N G W.Fundamentals of Rock Mechanics[M].New York: Halsted Press,1979.
    [10]
    王思敬.岩体工程地质力学中的数值分析[A].见:中国科学院地质力学研究所 编.岩体工程地质力学问题[C].北京:科学出版社,1987,86—95.
    [11]
    Lorentz E, Andrieux S. A variational formulation for nonlocal damage models[J].International Journal of Plasticity,1999,15(2):119—138. doi: 10.1016/S0749-6419(98)00057-6
    [12]
    Gadala M S. Recent advances in the numerical modeling of constitutive relations[J].Finite Elements in Analysis and Design,1997,24(3):171—185. doi: 10.1016/S0168-874X(96)00048-0
    [13]
    Sih G C, Tang X S. Dual scaling damage model associated with weak singularity for macroscopic crack possessing a micro/mesoscopic notch tip[J].Theoretical and Applied Fracture Mechanics,2004,42(1):1—24. doi: 10.1016/j.tafmec.2004.06.001
    [14]
    周建平,李爱丽,余芳儒.含微裂纹弹性体的应力应变关系[J].力学学报,1994,26(1):49—59.
    [15]
    Seaman Lynn, Curran Donald R,Shockey Donald A. Computational models for ductile and brittle fracture[J].Journal of Applied Physics,1976,47(11):4814—4826. doi: 10.1063/1.322523
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2546) PDF downloads(603) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return