Citation: | LI Lin-yuan, XIAO Yi-min. Wavelet-Based Estimators of the Mean Regression Function With Long Memory Date[J]. Applied Mathematics and Mechanics, 2006, 27(7): 789-798. |
[1] |
Hart J D.Kernel regression estimation with time series errors[J].J Roy Statist Soc,Ser B,1991,53:173—187.
|
[2] |
Tran L T,Roussas G G,Yakowitz S,et al.Fixed-design regression for linear time series[J].Ann Statist,1996,24:975—991. doi: 10.1214/aos/1032526952
|
[3] |
Truong Y K,Patil P N.Asymptotics for wavelet based estimates of piecewise smooth regression for stationary time series[J].Ann Inst Statist Math,2001,53:159—178. doi: 10.1023/A:1017928823619
|
[4] |
Beran J.Statistics for Long Memory Processes[M].New York:Chapman and Hall,1994.
|
[5] |
Hall P,Hart J D.Nonparametric regression with long-range dependence[J].Stochastic Process Appl,1990,36:339—351. doi: 10.1016/0304-4149(90)90100-7
|
[6] |
Robinson P M,Hidalgo F J.Time series regression with long-range dependence[J].Ann Statist,1997,25:77—104. doi: 10.1214/aos/1034276622
|
[7] |
Csorgo S,Mielniczuk J.Nonparametric regression under long-range dependent normal errors[J].Ann Statist,1995,23:1000—1014. doi: 10.1214/aos/1176324633
|
[8] |
Robinson P M.Large-sample inference for nonparametric regression with dependent errors[J].Ann Statist,1997,25:2054—2083. doi: 10.1214/aos/1069362387
|
[9] |
Hardle W,Kerkyacharian G,Picard D,et al.Wavelets, Approximation and Statistical Applications[M].Lecture Notes in Statistics, 129.New York:Springer-Verlag,1998.
|
[10] |
Donoho D L,Johnstone I M.Minimax estimation via wavelet shrinkage[J].Ann Statist,1998,26:879—921. doi: 10.1214/aos/1024691081
|
[11] |
Donoho D L,Johnstone I M,Kerkyacharian G,et al.Wavelet shrinkage: asymptopia? (with discussion)[J].J Roy Statist Soc,Ser B,1995,57:301—369.
|
[12] |
Donoho D L,Johnstone I M,Kerkyacharian G,et al.Density estimation by wavelet thresholding[J].Ann Statist,1996,24:508—539. doi: 10.1214/aos/1032894451
|
[13] |
Hall P,Patil P.Formulae for mean integated squared error of non-linear waveletbased density estimators[J].Ann Statist,1995,23:905—928. doi: 10.1214/aos/1176324628
|
[14] |
Hall P,Patil P.On the choice of smoothing parameter, threshold and truncation in nonparametric regression by nonlinear wavelet methods[J].J Roy Statist Soc,Ser B,1996,58:361—377.
|
[15] |
Hall P,Patil P.Effect of threshold rules on performance of wavelet-based curve estimators[J].Statistic Sinica,1996,6:331—345.
|
[16] |
Johnstone I M.Wavelet threshold estimators for correlated data and inverse problems: Adaptivity results[J].Statistica Sinica,1999,9:51—83.
|
[17] |
Johnstone I M,Silverman B W.Wavelet threshold estimators for data with correlated noise[J].J Roy Statist Soc,Ser B,1997,59:319—351. doi: 10.1111/1467-9868.00071
|
[18] |
Wang Y.Function estimation via wavelet shrinkage for long-memory data[J].Ann Statist,1996,24:466—484. doi: 10.1214/aos/1032894449
|
[19] |
Daubechies I.Ten Lectures on Wavelets[M].Philadelphia:SIAM,1992.
|
[20] |
Cohen A,Daubechies I,Vial P.Wavelets on the interval and fast wavelet transforms[J].Appl Comput Harm Anal,1993,1:54—82. doi: 10.1006/acha.1993.1005
|
[21] |
Abry P,Veitch D.Wavelet analysis of long-range-dependent traffic[J].IEEE Trans on Inform Theory,1998,44:2—15. doi: 10.1109/18.650984
|
[22] |
Delbeke L,Van Assche Walter.A wavelet based estimator for the parameter of selfsimilarity of fractional Brownian motion[A].In:3rd International Conference on Approximation and Optimization in the Caribbean[C].Puebla:1995,Soc Mat Mexicana,M′exico:Aportaciones Mat. Comun 24,1998,65—76.
|
[23] |
Fox R,Taqqu M.Noncentral limit theorems for quadratic forms in random variables having long-range dependence[J].Ann Probab,1985,13:428—446. doi: 10.1214/aop/1176993001
|
[24] |
Mojor P.Multiple Wiener-It Integrals[M].Lect Notes in Math 849,New York:Springer-Verlag,1981.
|
[25] |
Durrett R.Probability: Theorey and Examples[M].Second Edition:Duxbury Press,1996.
|