REN Chun-feng, MA Yi-chen. Residual a Posteriori Error Estimate Two-Grid Methods for the Steady Navier-Stokes Equation With Stream Function Form[J]. Applied Mathematics and Mechanics, 2004, 25(5): 497-510.
Citation: REN Chun-feng, MA Yi-chen. Residual a Posteriori Error Estimate Two-Grid Methods for the Steady Navier-Stokes Equation With Stream Function Form[J]. Applied Mathematics and Mechanics, 2004, 25(5): 497-510.

Residual a Posteriori Error Estimate Two-Grid Methods for the Steady Navier-Stokes Equation With Stream Function Form

  • Received Date: 2002-06-03
  • Rev Recd Date: 2003-12-03
  • Publish Date: 2004-05-15
  • Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The a posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.
  • loading
  • [1]
    Ye Xu.Two-grid discretion with backtracking of the stream function form of the Navier-Stokes equations[J].Appl Math Comp,1999,100(2/3):131—138. doi: 10.1016/S0096-3003(98)00024-1
    [2]
    Layton W,Ye X.Two level discretion of the stream function form of the Navier-Stokes equations[J].Numer Funct Anal And Optimi,1999,20(9/10):909—916. doi: 10.1080/01630569908816931
    [3]
    Fairag F.A Two-level finite element discretization of the stream function form of the Navier-Stokes equations[J].Comput Math Appl,1998,36(2):117—127. doi: 10.1016/S0898-1221(98)00123-0
    [4]
    XU Jin-chao.A novel two-grid method for semilinear elliptic equations[J].SIAM J Sci Comput,1994,15(1):231—237. doi: 10.1137/0915016
    [5]
    XU Jin-chao.Two-grid finite element discretizations for nonlinear PDE's[J].SIAM J Numer Anal,1996,33(5):1759—1777. doi: 10.1137/S0036142992232949
    [6]
    Layton W.A two-level discretization method for the Navier-Stokes equations[J].Comput Appl Math,1993,26(2):33—38.
    [7]
    Layton W,Lenferink W.Two-level Picard and modified Picard methods for the Navier-Stokes equations[J].Appl Math Comput,1995,80:1—12.
    [8]
    Layton W,Tobiska L.A two-level method with backtracking for the Navier-Stokes equations[J].SIAM J Numer Anal,1998,35(5):2035—2054. doi: 10.1137/S003614299630230X
    [9]
    任春风,马逸尘.Navier-Stokes方程流函数形式两重网格算法的误差分析[J].应用数学和力学,2002,[STHZ]. 23[STBZ]. (7):689—696.
    [10]
    Verfürth R.A review of a posteriori error estimates for nonlinear problems, Lr-estimate for finite element discretization of elliptic equations[J].Math Comp,1998,67(224):1335—1360. doi: 10.1090/S0025-5718-98-01011-4
    [11]
    Volker John.Residual a posteriori error estimates for two-level finite element methods for the Navier-Stokes equations[J].Applied Numerical Mathematics,2001,37(4):503—518. doi: 10.1016/S0168-9274(00)00058-1
    [12]
    Angermann L.A posteriori error estimates for FEM with violated Galerkin orthogonality[J].Numer Methods Partial Differential Equations,2002,18(2):241—259. doi: 10.1002/num.10005
    [13]
    Clément Ph.Approximation by finite element functions using local regularization[J].RAIRO Anal Numer,1995,9(2):77—84.
    [14]
    Ervin V,Layton W,Maubach J.A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations[J]Numer Methods Partial Differential Equations,1996,12(3):333—346.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3364) PDF downloads(626) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return