CHENG Chang-jun, MEI Bo. Dynamical Formation of Cavity for Composed Thermal Hyperelastic Spheres in Non-Uniform Temperature Fields[J]. Applied Mathematics and Mechanics, 2006, 27(4): 395-403.
Citation: CHENG Chang-jun, MEI Bo. Dynamical Formation of Cavity for Composed Thermal Hyperelastic Spheres in Non-Uniform Temperature Fields[J]. Applied Mathematics and Mechanics, 2006, 27(4): 395-403.

Dynamical Formation of Cavity for Composed Thermal Hyperelastic Spheres in Non-Uniform Temperature Fields

  • Received Date: 2004-06-30
  • Rev Recd Date: 2005-12-11
  • Publish Date: 2006-04-15
  • Dynamical formation and growth of cavity in a sphere composed of two incompressible thermal-hyperelastic Gent-Thomas materials are discussed under the case of a non-uniform temperature field and surface dead loading.The mathematical model was first presented based on the dynamical theory of finite deformations.An exact differential relation between the void radius and surface load was obtained by using the variable transformation method.By numerical computation,critical loads and cavitation growth curves were obtained for different temperatures.The influence of the temperature and material parameters of the composed sphere on the void formation and growth are considered and compared with that for static analysis.The results show that the cavity occurs suddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.
  • loading
  • [1]
    朱兆祥.材料和结构的不稳定性[M].北京:科学出版社,1994.
    [2]
    Gent A N,Lindley P B.Internal rupture of bonded rubber cylinders in tension[J].Proc R Soc London Ser A,1958,249:195—205.
    [3]
    Williams M L,Schapery R A.Spherical flaw instability in hydrostatic tension[J].Internat J Fracture,1965,1(1):64—71. doi: 10.1007/BF00184154
    [4]
    Ball J M.Discontinuous equilibrium solutions and cavitations in nonlinear elasticity[J].Phil Trans R Soc Lond,Ser A,1982,306:557—610. doi: 10.1098/rsta.1982.0095
    [5]
    Horgan C O,Abeyaratne R.A bifurcation problem for a compressible nonlinearly elastic medium:growth of a micro-viod[J].J Elasticity,1986,16(1):189—200. doi: 10.1007/BF00043585
    [6]
    Horgan C O,Polignone D A.Cavitation in nonlinear elastic solids: A review[J].Appl Mech Rev,1995,48:471—485. doi: 10.1115/1.3005108
    [7]
    Knowles J K.On a class of oscillations in the finite deformation theory of elasticity[J].J Appl Meth,1962,29(2):283—286.
    [8]
    Guo Z H,Solecki R.Free and forced finite amplitude oscillations of an elastic thick-walled hollow sphere made of incompressible material[J].Arch Mech Stos,1963,15:427—433.
    [9]
    Calderer C.The dynamical behavior of nonlinear elastic spherical shells[J].J Elasticity,1983,13(1):17—47. doi: 10.1007/BF00041312
    [10]
    Chou-Wang M-S,Horgan C O.Cavitation in nonlinear ealstodynamic for neo-Hookean materials[J].Internat J Engng Sci,1989,27:967—973.
    [11]
    REN Jiu-sheng, CHENG Chang-jun. Dynamical formation of cavity in transversely isotropic hyper~elastic spheres[J].Acta Mechanica Sinica,2003,19(3):320—323. doi: 10.1007/BF02487808
    [12]
    任九生,程昌钧.超弹性材料中空穴的动态生成[J].固体力学学报,2004,25(1):42—46.
    [13]
    Casey J.Abeyaratne R.Finite Thermoelasticity[M]. The American Society of Mechanical Engineers,1999.
    [14]
    Nicholson D W,Nelson N.Finite element analysis in design with rubber elasticity[J].Rubber Chem Technol,1990,63:358—406.
    [15]
    Nicholson D W,Lin B.Theory of thermoelasticity for bear-incompressible elastomers[J].Acta Mech,1996,116(1):15—28. doi: 10.1007/BF01171417
    [16]
    Eringen A C.Mechanics of Continua[M].Second Edition.New York: Robert E Krieger Publishing Cpmpany,1980.(中译本:程昌钧,俞焕然 译,戴天民 校.连续统力学[M].,北京:科学出版社,1990.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2312) PDF downloads(593) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return