Citation: | WU Zheng-ren, CHENG You-liang, WANG Song-ling, LÜ Yu-kun. Effects of the Varying Bottom on Nonlinear Surface Waves[J]. Applied Mathematics and Mechanics, 2006, 27(3): 365-371. |
[1] |
Kapitza P L,Kapitza S P.Wave flow of thin layers of a viscous fluid[A].In:Haar D Ter Ed.Collected Papers of P L Kapitza(Vol.Ⅱ)[C].New York:The Macmillan Company, 1964,662—709.
|
[2] |
蒋章焰,马同泽,赵嘉琅,等.垂直管外降落液膜的流动和传热特性[J].工程热物理学报,1988,9(1):70—74.
|
[3] |
Lin S P,Wang C Y.Modeling wavy film flows[A].In:Cheremisinoff N P Ed.Encyclopedia of Fluid Mechanics[C].Houston: Gulf Publishing Co,1986,930—951.
|
[4] |
Akylas T R.On the excitation of long nonlinear water waves by a moving pressure distribution[J].J Fluid Mech,1984,141:455—466. doi: 10.1017/S0022112084000926
|
[5] |
Wang C Y.Liquid film flowing slowly down a wavy incline[J].American Institute of Chemical Engineering,1981,27(2):207—212. doi: 10.1002/aic.690270206
|
[6] |
Davis A G,Heathershaw A D.Surface-wave propagation over sinusoidally varying topography[J].J Fluid Mech,1984,144:419—443. doi: 10.1017/S0022112084001671
|
[7] |
ZHANG Dao-hua,Chwang Allen T.Generation of solitary waves by forward- and backward-step bottom forcing[J].J Fluid Mech,2001,432:341—350.
|
[8] |
Yoshimasa Nonaka.Internal solitary waves moving over the low slope of topographies[J].Fluid Dynamics Research,1996,17(6):329—349. doi: 10.1016/0169-5983(95)00035-6
|
[9] |
朱勇.流体流过下凹地形的共振流动[J].应用数学和力学,1997,18(5):447—450.
|
[10] |
Fornberg B,Whitham G B.A numerical and theoretical study of certain nonlinear wave phenomena[J].J Fluid Mech,1978,289:333—404.
|
[11] |
Fornberg Bengt.A Practical Guide to Pseudospectral Methods[M].New York:Cambridge University Press, 1996,173—196.
|
[12] |
Wu T Y.Generation of upstream advancing solitons by moving disturbance[J].J Fluid Mech,1984,184:75—99.
|
[1] | Naranmandula, Ereduncang. Symmetric Solitary Waves and Their Existence Conditions in Cubic Nonlinear Microstructured Solids[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1210-1217. doi: 10.3879/j.issn.1000-0887.2014.11.004 |
[2] | QIN Yu-yue, DENG Zi-chen, HU Wei-peng, . Bifurcations of Solitary Wave Solutions to the Shallow Water Equation of Moderate Amplitude[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1002-1010. doi: 10.3879/j.issn.1000-0887.2014.09.006 |
[3] | XU Cheng-long, GUO Ben-yu. Modified Laguerre Spectral and Pseudospectral Methods for Nonlinear Partial Differential Equations in Multiple Dimensions[J]. Applied Mathematics and Mechanics, 2008, 29(3): 281-300. |
[4] | ZHANG Shan-yuan, LIU Zhi-fang. Three Kinds of Nonlinear-Dispersive Waves in Finite Deformation Elastic Rods[J]. Applied Mathematics and Mechanics, 2008, 29(7): 825-832. |
[5] | FENG Da-he, LI Ji-bin. Bifurcations of Travelling Wave Solutions for Jaulent-Miodek Equations[J]. Applied Mathematics and Mechanics, 2007, 28(8): 894-900. |
[6] | LONG Yao, RUI Wei-guo, HE Bin, CHEN Can. Bifurcations of Travelling Wave Solutions for the Generalized Drinfeld-Sokolov Equations[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1357-1362. |
[7] | LIU Chang-gen, TAO Jian-hua. Modeling the Interaction of Solitary Waves and Semi-Circular Breakwaters by Using Unsteady Reynolds Equations[J]. Applied Mathematics and Mechanics, 2004, 25(10): 1023-1032. |
[8] | SHANG Ya-dong, GUO Bo-ling. Analysis of Chebyshev Pseudospectral Method for Multi-Dimensional Generalized SRLW Equations[J]. Applied Mathematics and Mechanics, 2003, 24(10): 1035-1048. |
[9] | ZHANG Ren, WANG Ji-guang, YU Zhi-hao, JIANG Quan-rong. Rossby Inertia Gravity Solitary Wave and the Remote Correlation Between the East and the West-Pacific Subtropical High[J]. Applied Mathematics and Mechanics, 2002, 23(7): 707-714. |
[10] | SHAO Xue-ming, LIN Jian-zhong, YU Zhao-sheng. Research on Coherent Structures in a Mixing Layer of the FENE-P Polymer Solution[J]. Applied Mathematics and Mechanics, 2001, 22(3): 259-266. |
[11] | ZHOU Xian-chu, Rui Yi. Numerical Simulation of Standing Solitons and Their Interaction[J]. Applied Mathematics and Mechanics, 2000, 21(12): 1238-1246. |
[12] | Xie Weisong, Tao Jianhua. Interaction of a Solitary Wave and a Front Step Simulated by Level Set Method[J]. Applied Mathematics and Mechanics, 2000, 21(7): 686-692. |
[13] | Yu Zhaosheng, Lin Jianzhong. Numerical Research on the Coherent Structure in the Viscoelastic Second-Order Mixing Layers[J]. Applied Mathematics and Mechanics, 1998, 19(8): 671-677. |
[14] | Zhu Yong. Numerical Study of a Nonlinear Integro-Differential Equation[J]. Applied Mathematics and Mechanics, 1998, 19(11): 980-985. |
[15] | Zhu Yong. Strongly oblique Interactions between Internal Solitary Waves with the Same Mode[J]. Applied Mathematics and Mechanics, 1997, 18(10): 893-898. |
[16] | Zhu Yong. Resonant Flow of a Fluid Past a Concave Topography[J]. Applied Mathematics and Mechanics, 1997, 18(5): 447-450. |
[17] | Tian Li-xin, Xu Zhen-yuan, Liu Zeng-rong. Attractors of Oisslpative Soliton Equation[J]. Applied Mathematics and Mechanics, 1994, 15(6): 539-547. |
[18] | Zhu Yong. Head-on Collision between Two mKdV Solitary Waves in a Two-Layer Fluid System[J]. Applied Mathematics and Mechanics, 1992, 13(5): 389-399. |
[19] | Zheng Jia-dong, Zhang Ru-fen, Guo Ben-yu. The Fourier Pseudo-Spectral Method for the SRLW Equation[J]. Applied Mathematics and Mechanics, 1989, 10(9): 801-810. |
[20] | Pan Xiu-de. Solitary Wave and Similarity Solutions of the Combined KdV Equation[J]. Applied Mathematics and Mechanics, 1988, 9(3): 281-285. |