SUN Jian-qiang, MA Zhong-qi, TIAN Yi-min, QIN Meng-zhao. Symplectic Structure of Poisson System[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1345-1350.
Citation: SUN Jian-qiang, MA Zhong-qi, TIAN Yi-min, QIN Meng-zhao. Symplectic Structure of Poisson System[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1345-1350.

Symplectic Structure of Poisson System

  • Received Date: 2004-07-05
  • Rev Recd Date: 2005-06-16
  • Publish Date: 2005-11-15
  • When the Poisson matrix of Poisson system is non-constant,classical symplectic methods,such as symplectic Runge-Kutta method,generating function method,cannot preserve the Poisson structure.The non-constant Poisson structure was transformed into the symplectic structure by the nonlinear transform.Arbitrary order symplectic method was applied to the transformed Poisson system.The Euler equation of the free rigid body problem was transformed into the symplectic structure and computed by the mid-point scheme.Numerical results show the effectiveness of the nonlinear transform.
  • loading
  • [1]
    HONG Jia-lin.A novel numerical approach to simulate nonlinear Schrdinger equations with varing coefficients[J].Applied Mathematical Letter,2003,16:759—765. doi: 10.1016/S0893-9659(03)00079-X
    [2]
    Feng K.Difference schemes for Hamiltonian formulation and symplectic geometry[J].J Comp Math,1986,4(3):279—289.
    [3]
    Feng K,Wu H M, Qin M Z,et al.Construction of canonical difference schemes for Hamiltonian formalism via generating functions[J].J Comp Math,1989,7(1):71—96.
    [4]
    QIN Meng-zhao,Li S T.A note for Lie-Poisson Hamiltonian-Jacobi equation and Lie-Poisson integrator[J].Computers Mathematical Application,1995,30(7):67—74. doi: 10.1016/0898-1221(95)00126-J
    [5]
    McLachlan R I.Explicit Lie-Poisson integration and the Euler equations[J].Phys Rev Lett,1993,71:3043—3046. doi: 10.1103/PhysRevLett.71.3043
    [6]
    Li S T,QIN Meng-zhao.Lie-Poisson integration for rigid body dynamics[J].Computers Mathmatical Application,1995,30(9):105—118.
    [7]
    Zhu W,Qin M.Poisson schemes for Hamiltonian system on Poisson manifolds[J].Computers Mathematical Application,1994,27(12):7—16.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3064) PDF downloads(502) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return