Citation: | SUN Jian-qiang, MA Zhong-qi, TIAN Yi-min, QIN Meng-zhao. Symplectic Structure of Poisson System[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1345-1350. |
[1] |
HONG Jia-lin.A novel numerical approach to simulate nonlinear Schrdinger equations with varing coefficients[J].Applied Mathematical Letter,2003,16:759—765. doi: 10.1016/S0893-9659(03)00079-X
|
[2] |
Feng K.Difference schemes for Hamiltonian formulation and symplectic geometry[J].J Comp Math,1986,4(3):279—289.
|
[3] |
Feng K,Wu H M, Qin M Z,et al.Construction of canonical difference schemes for Hamiltonian formalism via generating functions[J].J Comp Math,1989,7(1):71—96.
|
[4] |
QIN Meng-zhao,Li S T.A note for Lie-Poisson Hamiltonian-Jacobi equation and Lie-Poisson integrator[J].Computers Mathematical Application,1995,30(7):67—74. doi: 10.1016/0898-1221(95)00126-J
|
[5] |
McLachlan R I.Explicit Lie-Poisson integration and the Euler equations[J].Phys Rev Lett,1993,71:3043—3046. doi: 10.1103/PhysRevLett.71.3043
|
[6] |
Li S T,QIN Meng-zhao.Lie-Poisson integration for rigid body dynamics[J].Computers Mathmatical Application,1995,30(9):105—118.
|
[7] |
Zhu W,Qin M.Poisson schemes for Hamiltonian system on Poisson manifolds[J].Computers Mathematical Application,1994,27(12):7—16.
|