LI Hong-fang, FU Chu-li, XIONG Xiang-tuan. Optimal Error Bound in a Sobolev Space of Regularized Approximation Solutions for a Sideways Parabolic Equation[J]. Applied Mathematics and Mechanics, 2005, 26(9): 1128-1134.
Citation: LI Hong-fang, FU Chu-li, XIONG Xiang-tuan. Optimal Error Bound in a Sobolev Space of Regularized Approximation Solutions for a Sideways Parabolic Equation[J]. Applied Mathematics and Mechanics, 2005, 26(9): 1128-1134.

Optimal Error Bound in a Sobolev Space of Regularized Approximation Solutions for a Sideways Parabolic Equation

  • Received Date: 2003-05-30
  • Rev Recd Date: 2005-05-01
  • Publish Date: 2005-09-15
  • The inverse heat conduction problem(IHCP)is severely ill-posed problem in the sense that the solution(if it exists)does not depend continuously on the data.But now the results on inverse heat conduction problem are mainly devoted to the standard inverse heat conduction problem.Some optimal error bounds in a sobolev spaceof regularized approximation solutions for a sideways parabolic equation,i.e.,a non-standard inverse heat conduction problem with convection term which appears in some applied subject are given.
  • loading
  • [1]
    Beck J V,Blackwell B,Clair C R.Inverse Heat Conduction: Ⅰ[KG-*4]. ll-Posed Problem[M].New York:Wiley,1985,1—8,108—110.
    [2]
    Carrasso A.Determining surface temperature from interior observations[J].SIAM Journal of Applied Mathematics,1982,42(3):558—574. doi: 10.1137/0142040
    [3]
    Beck J V.Nonlinear estimation applied to the nonlinear inverse heat conduction problem[J].International Journal of Heat and Mass Transfer,1970,13(4):703—716. doi: 10.1016/0017-9310(70)90044-X
    [4]
    FU Chu-li,ZHU You-bin,QIU Chun-yu.Wavelet regularization for an inverse heat conduction problem[J].Journal of Mathematical Analysis and Applications,2003,288(1):212—222. doi: 10.1016/j.jmaa.2003.08.003
    [5]
    XIONG Xiang-tuan,FU Chu-li,LI Hong-fang.Central difference schemes in time amd error estimate on a non-standard inverse heat conduction problem[J].Applied Mathematics and Computation,2004,157(1):77—91. doi: 10.1016/j.amc.2003.08.028
    [6]
    FU Chu-li,XIONG Xiang-tuan,LI Hong-fang,et al.Wavelet and spectralregularized methods for a sideways parabolic equation[J].Applied Mathematics and Computation,2005,160(3):881—908. doi: 10.1016/j.amc.2003.12.007
    [7]
    邱春雨,陶建红,傅初黎.一维非标准型逆热传导问题的Fourier正则化方法[J].兰州大学学报,2002,38(1):1—5.
    [8]
    Tautenhahn U.Optimal stable approximations for the sideways heat equation[J].Journal of Inverse and Ⅰ[KG-*4]. ll-Posed Problems,1997,5(3):287—307.
    [9]
    Tautenhahn U.Optimality for ill-posed problems under general source conditions[J].Numerical Functional Analysis and Optimization,1998,19(3/4):377—398. doi: 10.1080/01630569808816834
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2566) PDF downloads(757) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return