Citation: | ZHAO Hai-bo, ZHENG Chu-guang, XU Ming-hou. Multi-Monte Carlo Method for General Dynamic Equation Considering Particle Coagulation[J]. Applied Mathematics and Mechanics, 2005, 26(7): 875-882. |
[1] |
Tucker W G. An overview of PM 2.5 sources and control strategies[J].Fuel Processing Technology,2000,65(1):379—392. doi: 10.1016/S0378-3820(99)00105-8
|
[2] |
Meng Z,Dabdub D,Seinfeld J H. Size-resolved and chemically resolved model of atmospheric aerosol dynamics[J].Journal of Geophysical Research,1998,103(3):3419—3435. doi: 10.1029/97JD02796
|
[3] |
Debry E,Sportisse B,Jourdain B. A stochastic approach for the numerical simulation of the general dynamics equation for aerosols[J].Journal of Computational Physics,2003,184(2):649—669. doi: 10.1016/S0021-9991(02)00041-4
|
[4] |
Liffman K. A direct simulation Monte Carlo method for cluster coagulation[J].Journal of Computational Physics,1992,100(1):116—127. doi: 10.1016/0021-9991(92)90314-O
|
[5] |
Kruis F E,Maisels A,Fissan H. Direct simulation Monte Carlo method for particle coagulation and aggregation[J].AICHE Journal,2000,46(9):1735—1742. doi: 10.1002/aic.690460905
|
[6] |
Smith M,Matsoukas T. Constant-number Monte Carlo simulation of population balances[J].Chemical Engineering Science,1998,53(9):1777—1786. doi: 10.1016/S0009-2509(98)00045-1
|
[7] |
Lee K,Matsoukas T. Simultaneous coagulation and break-up using constant-N Monte Carlo[J].Powder Technology,2000,110(1/2):82—89. doi: 10.1016/S0032-5910(99)00270-3
|
[8] |
Lin Y,Lee K,Matsoukas T. Solution of the population balance equation using constant-number Monte Carlo[J].Chemical Engineering Science,2002,57(12):2241—2252. doi: 10.1016/S0009-2509(02)00114-8
|
[9] |
Nanbu K. Direct simulation scheme derived from the Boltzmann equation Ⅰ-Monocomponent gases[J].Journal of the Physical Society of Japan,1980,49(11):2042—2049. doi: 10.1143/JPSJ.49.2042
|
[10] |
Nanbu K,Yonemura S. Weighted particles in coulomb collision simulations based on the theory of a cumulative scattering angle[J].Journal of Computational Physics,1998,145(2):639—654. doi: 10.1006/jcph.1998.6049
|
[11] |
ZHAO Hai-bo,ZHENG Chu-guang,XU Ming-hou. Multi-Monte Carlo method for particle coagulation:description and validation[J].Applied Mathematics and Computation,2005,168(2):.
|
[12] |
Friedlander S K,Wang C S. The self-preserving particle size distribution for coagulation by Brownian motion[J].Journal of Colloid and Interface Science,1966,22(1):126—132. doi: 10.1016/0021-9797(66)90073-7
|
[13] |
Lee K W,Lee Y J,Han D S. The log-normal size distribution theory for Brownian coagulation in the low Knudsen number regime[J].Journal of Colloid and Interface Science,1997,188(2):486—492. doi: 10.1006/jcis.1997.4773
|