KANG Jian-ling, WANG Hong, YE Hua-wen. Configuration Controllability for Non-Zero Potential Mechanical Control Systems With Dissipation[J]. Applied Mathematics and Mechanics, 2005, 26(7): 826-832.
Citation: KANG Jian-ling, WANG Hong, YE Hua-wen. Configuration Controllability for Non-Zero Potential Mechanical Control Systems With Dissipation[J]. Applied Mathematics and Mechanics, 2005, 26(7): 826-832.

Configuration Controllability for Non-Zero Potential Mechanical Control Systems With Dissipation

  • Received Date: 2003-10-14
  • Rev Recd Date: 2005-03-22
  • Publish Date: 2005-07-15
  • Within the affine connection framework of Lagrangian control systems, based on the results of Sussmann on controllability of general affine control systems defined on a finite-dimensional manifold, a computable sufficient condition of configuration controllability for the simple mechanical control systems was extended to the case of systems with strictly dissipative energy terms of linear isotropic nature, and a sufficient conditon of equilibrium controllability for the systems was also given, where Lagrangian is kinetic energy minus potential energy. Lie bracketting of vector fields in controllable Lie algebra, and the symmetric product associated with Levi-Civita connection show virtues in the discussion. Liouville vector field simplified the computation of controllable Lie algebra for the systems, although the terms of potential energy complicated the study of configuration controllability.
  • loading
  • [1]
    Nijmeijer H,van der Schaft A J.Nonlinear Dynamical Control Systems[M].New York-Heidelberg:Springer-Verlag,1990,349—392.
    [2]
    Murray R M.Nonlinear control of mechanical systems:a lagrangian perspective[J].Annual Reviews in Control,1997,21(2):31—42. doi: 10.1016/S1367-5788(97)00023-0
    [3]
    Lewis A D,Murray R M.Configuration controllability of simple mechanical control systems[J].SIAM J Control Optimization,1997,35(3):766—790. doi: 10.1137/S0363012995287155
    [4]
    Lewis A D.Aspects of geometric mechanics and control mechanical systems[D].Ph D thesis, Pasadena:California Institute of Technology,CA,1995,49—70.
    [5]
    Sussmann H J.A general theorem on local controllability[J].SIAM J Control Optimization,1987,25(1):158—194. doi: 10.1137/0325011
    [6]
    Lewis A D,Murray R M. Decompositions of control systems on manifolds with an affine connection[J].Systems Control Letter,1997,31(1):199—205. doi: 10.1016/S0167-6911(97)00040-6
    [7]
    Lewis A D.Simple mechanical control systems with constraints[J]. IEEE Transactions on Automatic Control,2000,45(8):1420—1436. doi: 10.1109/9.871752
    [8]
    Monforte J C.Geometric Control and Numerical Aspects of Nonholonomic Systems[M].Lecture Notes in Mathematics 1793,Berlin-Heidelberg:Springer-Verlag,2002,194—198.
    [9]
    Vela P A,Morgansen K A,Burdick J W. Second order averaging methods and oscillatory control of underactuated mechanical systems[A].In:IEEE American Control Conference[C],2000,4672—4677.
    [10]
    Abraham R,Marsden J E,Ratiu T.Manifolds, Tensor Analysis, and Applications[M].2nd ed. Applied Mathematical Sciences 75, New York: Springer-Verlag, 1988,157—193.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2555) PDF downloads(704) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return