LIU Ru-xun, WU Ling-ling. Small-Stencil Pad Schemes to Solve Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2005, 26(7): 801-809.
Citation: LIU Ru-xun, WU Ling-ling. Small-Stencil Pad Schemes to Solve Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2005, 26(7): 801-809.

Small-Stencil Pad Schemes to Solve Nonlinear Evolution Equations

  • Received Date: 2003-09-03
  • Rev Recd Date: 2005-03-11
  • Publish Date: 2005-07-15
  • A set of small-stencil new Pad schemes with the same denominator are presented to solve high-order non-linear evoltuion equations. Using this scheme, the fourth-order precision cannot only be kept, but also the final three-diagonal discrete systems are solved by simple Doolittle methods, or ODE systems by Runge-Kutta technique. Numerical samples show that the schemes are very satisfactory. And the advantage of the schemes is very clear compared to other finite difference schemes.
  • [1]
    Kahan W,LI Ren-chang.Unconventional schemes for a class of ordinary differential equations with applications to the Korteweg-de Vries equation[J].J Math Phys,1997,134(6):316—331.
    [2]
    Gardner L R T,Gardner G A.Solitary waves of regularised long-wave equation[J].J Math Phys,1990,91:441—459.
    [3]
    Lele S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103:16—42. doi: 10.1016/0021-9991(92)90324-R
    [4]
    Kobayashi M H.On a class of Pade finite volume methods[J].Journal of Computational Physics,1999,156(1):137—180. doi: 10.1006/jcph.1999.6376
    [5]
    Hixon R.Prefactored small-stencil compact schemes[J]. Journal of Computational Physics,2000,165(2):522—541. doi: 10.1006/jcph.2000.6631
    [6]
    Carpenter M H.Methodology and application to high-order compact schemes[J].Journal of Computational Physics,1994,111:220—236. doi: 10.1006/jcph.1994.1057
    [7]
    Goedheer W J,Potters J H H M.A compact finite scheme on a non-equidistant mesh[J].Journal of Computational Physics,1985,61:269—279. doi: 10.1016/0021-9991(85)90086-5
    [8]
    Ganosa J,Gazdag J.The Korteweq-de Vries-Burgers equation[J].Journal of Computational Physics,1977,23:293—403.
    [9]
    忻孝康,刘儒勋,蒋伯城.计算流体动力学[M].长沙:国防科技大学出版社,1989.
    [10]
    刘儒勋,舒其望.计算流体力学的某些新方法[M].北京:科学出版社,2003.
  • Relative Articles

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.3 %FULLTEXT: 19.3 %META: 80.0 %META: 80.0 %PDF: 0.6 %PDF: 0.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.0 %其他: 7.0 %China: 0.7 %China: 0.7 %France: 0.1 %France: 0.1 %Singapore: 0.2 %Singapore: 0.2 %北京: 0.6 %北京: 0.6 %南京: 0.1 %南京: 0.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %天津: 0.1 %天津: 0.1 %山景城: 0.1 %山景城: 0.1 %弗吉: 0.1 %弗吉: 0.1 %张家口: 1.3 %张家口: 1.3 %新奥尔良: 0.5 %新奥尔良: 0.5 %无锡: 0.5 %无锡: 0.5 %武汉: 0.1 %武汉: 0.1 %深圳: 0.2 %深圳: 0.2 %石家庄: 0.4 %石家庄: 0.4 %纽约: 0.1 %纽约: 0.1 %芒廷维尤: 9.0 %芒廷维尤: 9.0 %苏州: 0.1 %苏州: 0.1 %西宁: 77.8 %西宁: 77.8 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %达姆施塔特: 0.1 %达姆施塔特: 0.1 %郑州: 0.4 %郑州: 0.4 %阳泉: 0.1 %阳泉: 0.1 %其他ChinaFranceSingapore北京南京南宁南昌台州合肥哥伦布天津山景城弗吉张家口新奥尔良无锡武汉深圳石家庄纽约芒廷维尤苏州西宁西安贵阳达姆施塔特郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2923) PDF downloads(676) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return