Citation: | WANG Ben-long, LIU Hua. Higher Order Boussinesq-Type Equations for Water Waves on Uneven Bottom[J]. Applied Mathematics and Mechanics, 2005, 26(6): 714-722. |
[1] |
Madsen P A,Schffer H A.Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis[J].Phil Trans Roy Soc,London A,1998,(356):3123—3184.
|
[2] |
Gobbi M F,Kirby J T,Wei G.A fully nonlinear Boussinesq model for surface wave—Ⅱ:Extension to O(kh)4[J].J Fluid Mech,2000,(405):181—210.
|
[3] |
HONG Guang-wen.Higher order model of nonlinear and dispersive wave in water of varying depth with arbitrary sloping bottom[J].China Ocean Engineering,1997,11(3):243—260.
|
[4] |
邹志利.含强水流高阶Boussinesq水波方程[J].海洋学报,2000,22(4):41—50.
|
[5] |
CHEN Qin,Madsen P A,Basco D R.Current effects on nonlinear interactions of shallow-water waves[J].Journal of Waterway, Port, Coastal, and Ocean Engineering,1999,125(4):176—186. doi: 10.1061/(ASCE)0733-950X(1999)125:4(176)
|
[6] |
Kristensen M K.Boussinesq equations and wave-current interaction[D].Master's thesis.International Research Center for Computed Hydrodynamics (ICCH) at Danish Hydraulic Institute,Denmark and ISVA,Technical University of Denmark,1995,130—142.
|
[7] |
Madsen P A,Bingham H B,Liu H.A new Boussinesq method for fully nonlinear waves from shallow to deep water[J].J Fluid Mech,2002,(462):1—30.
|
[8] |
Wu T Y.A unified theory for modeling water waves[A].In:Advances in Applied Mechanics[C].Boston:Academic Press,2000,37:1—88.
|
[9] |
Booij N.A note on the accuracy of the mild-slope equation[J].Coastal Engineering,1983,7(2):191—203. doi: 10.1016/0378-3839(83)90017-0
|
[10] |
Suh K D,Lee C,Park W S.Time-dependent equations for wave propagation on rapidly varying topography[J].Coastal Engineering,1997,32(2/3):91—117. doi: 10.1016/S0378-3839(97)81745-0
|
[11] |
Chen Q,Madsen P A.Schffer H A,et al.Wave-current interaction based on an enhanced Boussinesq approach[J].Coastal Engineering,1998,33(1):11—39. doi: 10.1016/S0378-3839(97)00034-3
|
[12] |
Agnon Y,Madsen P A,Schffer H A.A new approach to high order Boussinesq models[J].J Fluid Mech,1999,(399):319—333.
|