WANG Ping, TANG Shao-qiang. Liquid-Gas Coexistence Equilibrium in a Relaxation Model[J]. Applied Mathematics and Mechanics, 2005, 26(6): 707-713.
Citation: WANG Ping, TANG Shao-qiang. Liquid-Gas Coexistence Equilibrium in a Relaxation Model[J]. Applied Mathematics and Mechanics, 2005, 26(6): 707-713.

Liquid-Gas Coexistence Equilibrium in a Relaxation Model

  • Received Date: 2003-07-08
  • Rev Recd Date: 2004-11-30
  • Publish Date: 2005-06-15
  • Stability of liquid-gas coexistence equilibrium in a relaxation model for isothermal phase transition in a sealed one-dimensional tube was discussed.With matched asymptotic expansion,a linear system for first order perturbations was derived formally.By solving this system analytically,it is shown that small initial perturbations are damped out in general;yet they may maintain at certain level for special cases.Numerical evidence is presented.This manifests the regularization effects of relaxation.
  • loading
  • [1]
    HSIEH Din-yu,WANG Xiao-ping. Phase transition in Van der Waals fluid[J].SIAM Journal on Applied Mathematics,1997,57(4):871—892. doi: 10.1137/S0036139995295165
    [2]
    Slemrod M. Dynamic phase transitions in a Van der Waals fluid[J].Differential Equations,1984,52:1—23. doi: 10.1016/0022-0396(84)90130-X
    [3]
    Zumbrun K. Dynamical[KG*3/4]. stability[KG*3/4]. of[KG*3/4]. phase[KG*3/4]. transitions in the p-system with viscosity-capillarity[J].SIAM Journal on Applied Mathematics,2000,60(6):1913—1924.
    [4]
    Fife P, WANG Xiao-ping. Periodic structures in a Van der Waals system[J].Pro Roy Soc Edinburgh Sect A,1998,128:235—250. doi: 10.1017/S0308210500012762
    [5]
    HE Chang-hong,WANG Xiao-ping.Symmetric solutions for a two dimensional Van der Waals system[D].Mphil Thesis. Math Dept HKUST, 1998.
    [6]
    FAN Hai-tao.Traveling waves, Riemann problems and computations of the dynamics of liquid/vapor phase transitions[J].Differential Equations,1998,150:385—437. doi: 10.1006/jdeq.1998.3491
    [7]
    CHEN Xin-fu,WANG Xiao-ping.Phase transition near a liquid-gas coexistence equilibrium[J].SIAM Journal on Applied Mathematics,2000,61(2):454—471. doi: 10.1137/S0036139999354285
    [8]
    JIN Sin, XING Zhou-ping.The relaxation schemes for systems of conservation laws in arbitrary space dimensions[J].Communications on Pure and Applied Mathematics,1995,48(3):1—43.
    [9]
    Natalini R,TANG Shao-qiang.Discrete kinetic models for dynamical phase transitions[J].Communications on Pure and Applied Analysis,2000,7(2):1—32.
    [10]
    TANG Shao-qiang,ZHAO Hui-jiang.Stability of suliciu model for phase transitions[J].Communications on Pure and Applied Analysis,2004,3(4):545—556. doi: 10.3934/cpaa.2004.3.545
    [11]
    TANG Shao-qiang.Patterns in 2-D dynamic phase transitions[A].In:CHIEN Wei-zang Ed.Proceedings of the 4th International Conference on Nonlinear Mechanics[C].Shanghai:Shanghai University Press, 2002, 820—823.
    [12]
    HSIEH Ding-yu,TANG Shao-qiang,WANG Xiao-ping.On hydrodynamic instabilities, chaos and phase transition[J].Acta Mechanica Sinica,1996,12(1):1—14. doi: 10.1007/BF02486757
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2722) PDF downloads(557) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return