Citation: | LI Jian-quan, ZHANG Juan, MA Zhi-en. Global Analysis of Some Epidemic Models With General Contact Rate and Constant Immigration[J]. Applied Mathematics and Mechanics, 2004, 25(4): 359-367. |
[1] |
Kermack W O,McKendrick A G.Contributions to the mathematical theory of epidemics—Part 1[J].Proc Roy Soc London Ser A,1927,115(3):700—721. doi: 10.1098/rspa.1927.0118
|
[2] |
Mena-Lorca J,Hethcote H W.Dynamic models of infectious diseases as regulators of population sizes[J].J Math Biol,1992,30(4):693—716.
|
[3] |
Li J,Ma Z.Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J].Math Comput Modelling,2002,35(11/12):1235—1243. doi: 10.1016/S0895-7177(02)00082-1
|
[4] |
Heesterbeck J A P,Metz J A J.The saturating contact rate in marriage-and epidemic models[J].J Math Biol,1993,31(2):529—539.
|
[5] |
Brauer F,Van den Driessche P.Models for transmission of disease with immigration of infectives[J].Math Biosci,2001,171(2):143—154. doi: 10.1016/S0025-5564(01)00057-8
|
[6] |
Han L,Ma Z,Hethcote H W.Four predator prey models with infectious diseases[J].Math Comput Modelling,2001,34(7/8):849—858. doi: 10.1016/S0895-7177(01)00104-2
|
[7] |
LaSalle J P.The Stability of Dynamical System[M].New York:Academic Press,1976.
|
[8] |
Jeffries C,Klee V,Van den Driessche P.When is a matrix sign stable?[J].Canad J Math,1977,29(2):315—326. doi: 10.4153/CJM-1977-035-3
|