ZHANG Peng, DAI Shi-qiang, LIU Ru-xun. Description and WENO Numerical Approximation to Nonlinear Waves of a Multi-Class Traffic Flow LWR Model[J]. Applied Mathematics and Mechanics, 2005, 26(6): 637-644.
Citation: ZHANG Peng, DAI Shi-qiang, LIU Ru-xun. Description and WENO Numerical Approximation to Nonlinear Waves of a Multi-Class Traffic Flow LWR Model[J]. Applied Mathematics and Mechanics, 2005, 26(6): 637-644.

Description and WENO Numerical Approximation to Nonlinear Waves of a Multi-Class Traffic Flow LWR Model

  • Received Date: 2003-12-30
  • Rev Recd Date: 2005-02-05
  • Publish Date: 2005-06-15
  • A strict proof of the hyperbolicity of the multi-class LWR(Lighthill-Whitham-Richards) traffic flow model,as well as the descriptions on those nonlinear waves characterized in the traffic flow problems were given.They were mainly about the monotonicity of densities across shocks and in rarefactions.As the system had no characteristic decomposition explicitly,a high resolution and higher order accuracy WENO (weighted essentially non-oscillatory) scheme was introduced to the numerical simulation,which coincides with the analytical description.
  • loading
  • [1]
    戴世强,冯苏苇,顾国庆.交通流动力学:它的内容、方法和意义[J].自然杂志,1997,11(4):196—201.
    [2]
    Helbing D.Traffic and related self-driven many-particle systems[J].Rev Mod Phys,2001,73(4):1067—1141. doi: 10.1103/RevModPhys.73.1067
    [3]
    Lighthill M H,Whitham G B.On kinematics wave—Ⅱ a theory of traffic flow on long crowded roads[J].Proc Roy Soc London,Ser A,1955,22:317—345.
    [4]
    Richards P I.Shack waves on the highway[J].Operations Research,1956,4(2):42—51. doi: 10.1287/opre.4.1.42
    [5]
    Wong G C K,Wong S C.a multi-class traffic flow model—an extension of LWR model with heterogeneous drivers[J].Transpn Res A,2002,36(9):827—841.
    [6]
    Harten A,Engquish B,Osher S,et al.Uniformly high order essentially non-oscillatory schemes Ⅲ[J].J Comput Phys,1987,71(2):231—303. doi: 10.1016/0021-9991(87)90031-3
    [7]
    Jiang G,Shu C -W.Efficient implementation of weighted ENO schemes[J].J Comput Phys,1996,126(1):202—228. doi: 10.1006/jcph.1996.0130
    [8]
    Liu X -D,Osher S,Chan T.Weighted essentially nonoscillatory schemes[J].J Comput Phys,1994,115(1):200—212. doi: 10.1006/jcph.1994.1187
    [9]
    Shu C -W.Lecture Notes in Mathematics-Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws[R]. 1697, Cetraro, Italy: Springe, 1997,329—432.
    [10]
    Whitham G B.Linear and Nonlinear Waves[M].NY: John Wiley and Sons, 1974.
    [11]
    Lax P D.Shock Waves and Entropy.In:Zarantonello E A Ed.Nonlinear Functional Analysis[M].New York:Academic Press, 1971.
    [12]
    Lax P D.Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves[M].Philadelphia:SIAM,1973.
    [13]
    Toro E F.Riemann Solvers and Numerical Methods for Fluid Dynamics[M].Berlin:Springer~Verlay,1999.
    [14]
    Shu C -W.TVB uniformly high order scheme for conservation laws[J].Mathematics of Computation,1987,49(179):105—121. doi: 10.1090/S0025-5718-1987-0890256-5
    [15]
    Shu C -W.Total-variation-diminishing time discretizations[J].SIAM Journal on Scientific and Statistical Computation,1988,9(4):1073—1084. doi: 10.1137/0909073
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2529) PDF downloads(633) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return