Citation: | HE Yin-nian. Taylor Expansion Method for the Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2005, 26(4): 481-488. |
[1] |
Temam R.Infinite Dimensional Dynamical Systems in Mechanics and Physics[M].New York,Berlin,Heidelberg,London: Springer-Verlag,1988.
|
[2] |
Foias C,Sell G R,Temam R.Inertial manifolds for the nonlinear evolutionary equations[J].J Differential Equations,1988,73(2):309—353. doi: 10.1016/0022-0396(88)90110-6
|
[3] |
Ambrosetti A,Prodi G.A Primer of Nonlinear Analysis[M].Cambridge: Cambridge University Press, 1995.
|
[4] |
陈铭俊,陈仲英.算子方程及其投影近似解[M].广州:广东科技出版社, 1992.
|
[5] |
何银年,李开泰.非线性算子方程的Taylor展开方法[J].数学学报,1998,41(2):317—326.
|
[6] |
LI Kai-tai,HUANG Ai-xiang,HE Yin-nian.Full discrete nonlinear Galerkin methods[A].In:YING Lun-gan,GUO Ben-yu Eds.Numerical Methods for Partial Differential Equations[C].Singapore: World Scientific, 1992, 61—82.
|
[7] |
Marion M,Temam R.Nonlinear Galerkin methods[J].SIAM J Numer Anal, 1989,26(5):1139—1157. doi: 10.1137/0726063
|
[8] |
Devulder C,Marion M,Titi E S.On the rate of convergence of nonlinear Galerkin methods[J].Math Comput,1993,60(202):495—514. doi: 10.1090/S0025-5718-1993-1160273-1
|
[9] |
SHEN Jie.Long time stability and convergence for fully discrete nonlinear Galerkin methods[J].Appl Anal,1990,38(4):201—229. doi: 10.1080/00036819008839963
|
[10] |
Heywood J G,Rannacher R.On the question of turbulence modeling by the approximate inertial manifolds and the nonlinear Galerkin method[J].SIAM J Numer Anal,1993,30(6):1603—1621. doi: 10.1137/0730083
|
[11] |
Marion M,XU Jin-chao.Error estmates a new nonlinear Galerkin method based on two-grid finite elements[J].SIAM J Numer Anal,1995,32(4):1170—1184. doi: 10.1137/0732054
|
[12] |
Temam R.Navier-Stokes Equations, Theory and Numerical Analysis[M].Amsterdam: North-Holland,1984.
|
[13] |
Garcia-Archilla B,Novo J,Titi E S.An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations[J].Math Comput,1999,68(227):893—911. doi: 10.1090/S0025-5718-99-01057-1
|