Ling. A Numerical Treatment of the Periodic Solutions of Non-Linear Vibration Systems[J]. Applied Mathematics and Mechanics, 1983, 4(4): 489-506.
Citation: Ling. A Numerical Treatment of the Periodic Solutions of Non-Linear Vibration Systems[J]. Applied Mathematics and Mechanics, 1983, 4(4): 489-506.

A Numerical Treatment of the Periodic Solutions of Non-Linear Vibration Systems

  • Received Date: 1982-07-28
  • Publish Date: 1983-08-15
  • Direct numerical integration can be used to find the periodic solutions for the equations of motion of nonlinear vibration systems. The initial conditions are iterated so that they coincide with the terminal conditions. The time interval of the integration (i.e.,the period) and certain parameters of the equations of motion can be included in the iterations.The integration method has a variable steplength.This shooting method can produce periodic solutions with a shorter computer time. The only error occurs in the numerical integration and it can therefore be estimated and made small enough. Using this method one can treat a variety of vibration problems, such as free conservative, forced, parameter-excited and self-sustained vibrations with one or several degrees-of-freedom. Unstable solutions and those which are sensitive to parameter changes can also be calculated.The stability of the solutions is investigated based on the theory of differential equations with periodic coefficients. The extrapolation method and the procedure of automatic steplength control are used to estimate the initial values of iterations by determining the resonance curve and other vibration characteristics.Some examples have been calculated to illustrate the applicability of the method. The non-linearity way be expressed by an analytical function or any other functions, such as a piecewise linear function. Several remarkable features of nonlinear vibrations are presented through the periodic solutions obtained. Finally, some results are compared with those obtained by other approximation methods and experiments.
  • loading
  • [1]
    Hsu,C.S.,Limit cycle oscillations of parametrically excited second-order nonlinear systems,J.Appl.Mech.,42(1975),176-182.
    [2]
    Riganti,R.,A Study on the Forced Vibrations of a Class on Nonlinear Sgstems with Application to the Duffing Equation Part II:Numerical Treatment,Mechanica,11(1976),81-88.
    [3]
    Mayfeh,A.H.and D.T.Mook,Nonlinear Oscillations.John Wiley & Sons,New York-Chichester-Brisbane-Toronto(1979).
    [4]
    Poincaré,H.,Mémoire sur les courbes définies par une équations différentielles,J.Math.3,Série,7(1881),375-422.
    [5]
    Hsu,C.S.,Nonlinear Behaviour of Multibody Systems under Impulsive Parametric Excitation,in"Dynamics of Multibody Systems,"Springer,Berlin-Heidelberg-New York(1977).
    [6]
    Hsu,C.S.,On Nonlinear Parametric Excitation Problems,Adv.Appl.Mech.,17(1977),245-301.
    [7]
    Urabe,M.,Numerical determination of periodic solution of nonlinear sgstem,J.Sci.Hiroshima Univ.Ser.A,20(1957),125-148.
    [8]
    Urabe,M.,Infinitesimal deformation of cycles.J.Sci.Hiroshima Univ.Ser.A.18(1954),37-53.
    [9]
    Urabe,M.,Remarks on periodic solutions of Van der Pol's equation,J.Sci.Hiroshima Univ.Ser.A,24(1960),197-199.
    [10]
    Urabe,M.,Nonlinear Autonomous Oscillations,Akademic Press,New York-London(1967).
    [11]
    Ruf.W.-D.,Numerische Lösung des Diffing-Problems.Diplomarbeit,Institut A fur Mechanik,Uni.Stuttgart(1978).
    [12]
    Ling,F.H(凌复华).,Numerische Bereahung periodischer Lösungen einiger nichtlinearer Schwingungssysteme,Dissertation,Uni.Stuttgart(1981).
    [13]
    Poincare,H.,Les Méthodesnouvelles de la mecanique céleste Vol.1,Guathiervillars,Paris(1892).
    [14]
    Ляпунов,А.М.,Обмая Задача об устойчивости Движения,Харвков,(1982),или ОНТИ(1935)
    [15]
    马尔金,《非线性振动理论中的李维普诺夫方法与邦加来法》,科学出版社,(1959)
    [16]
    Малкин,И.Г.,Теорая Устойчивости Движения,Гостехиздат,(1952)
    [17]
    Kane,T.R.and D.Sobala,A new method for attitude stabilization,AIAA J.,1(1963),1365-1367.
    [18]
    Stoer,J.and R.Bulirsch,Einführung in die Numerische Mathematik Ⅱ,Springer,Berlin-Heidelberg-New York(1978).
    [19]
    Fehlberg,E.,Klassische Runge-Kutta Formeln funfter und siebenter Ordnung mit Schrittweiten-Kontrolle,Computing,4(1969),93-106.
    [20]
    Fehlberg,E.,Klassische Runge-Kutta Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme,Computing,6(1970),61-71.
    [21]
    Shampine,L.F.and M.K.Gordon,Computer Solution of Ordinary Differential Equations,The initial Value Problem,W.H.Freema and Company,San Francisco(1975).
    [22]
    Stoker,J.J.,Nonlinear Vibrations in Mechanical and Electrical Systems,Interscience Publishers,New York-London(1950).
    [23]
    Schrapel,H.D.,Erweiterung eines Satzes von Andronow und Witt,ZAMM 57(1977),T89-T90.
    [24]
    Moler,C.and C.Van Loan,Nineteen dubious ways to compute the exponential of a matrix,SIAM Rev.,20(1978),801-836.
    [25]
    Friedmann,P.,C.E.Hammond and T.-H.Woo,Efficient numerical treatment of periodic systems with application to stability problems,Int.J.NUm.Math.Eng.,11(1977),1117-1136.
    [26]
    Hsu,C.S.,Impulsive parametrix excitation:theory,J.Appl Mech.,39(1972),551-558.
    [27]
    Hsu,C.S.and W.H.Cheng,Applications of the theory of impulsive parametric excitation and new treatments of general parametrix excitation problems,J.Appl.Mech.,40(1973),78-86.
    [28]
    Urabe,M.and A.Reiter,Numerical computation of nonlinear forced oscillations by Galerkin's procedure,J.Math.Anal.Appl.14(1966),107-140.
    [29]
    Rosenberg,R.M.and C.P.Atkinson,On the natural modes and their stability in nonlinear two-degree-of-freedom systems,J.Appl.Mech.,26(1959),377-385.
    [30]
    Sehtna,P.R.,Steady-state undamped vibrations of a class of nonlinear discrete systems,J.Appl Mech.,27(1960),187-195.
    [31]
    Van Dooren,R.,Differential tones in a damped mechanical system with quadratic and cubic non-linearities,Int.J.Nonlinear Mech.,8. (1973),575-583.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2448) PDF downloads(1251) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return