Chien Wei-zang, Pan Li-zhou, Liu Xiao-ming. Large Deflection Problem of a Clamped Elliptical Plate Subjected to Uniform Pressure[J]. Applied Mathematics and Mechanics, 1992, 13(10): 857-871.
Citation:
Chien Wei-zang, Pan Li-zhou, Liu Xiao-ming. Large Deflection Problem of a Clamped Elliptical Plate Subjected to Uniform Pressure[J]. Applied Mathematics and Mechanics, 1992, 13(10): 857-871.
Chien Wei-zang, Pan Li-zhou, Liu Xiao-ming. Large Deflection Problem of a Clamped Elliptical Plate Subjected to Uniform Pressure[J]. Applied Mathematics and Mechanics, 1992, 13(10): 857-871.
Citation:
Chien Wei-zang, Pan Li-zhou, Liu Xiao-ming. Large Deflection Problem of a Clamped Elliptical Plate Subjected to Uniform Pressure[J]. Applied Mathematics and Mechanics, 1992, 13(10): 857-871.
Large Deflection Problem of a Clamped Elliptical Plate Subjected to Uniform Pressure
Received Date: 1991-12-01
Publish Date:
1992-10-15
Abstract
In this paper,the perturbation solution of large deflection problem of clampedelliptical plate subjected to uniform pressure is given on the basis of the perturbationsolution of large deflection problem of similar clamped circular plate (1948)[1] ,(1954)[2] .The analytical solution of this problem was obtained in 1957.However,due to social difficulties,these results have never been published.Nash and Cooley (1959)[3] published a brief note of similar nature,in which only the case λ=a/b=2 is given.In this paper,the analytical solution is given in detail up to the 2nd approximation.The numerical solutions are given for various Poisson ratios ν =0.25,0.30,0.35 and for various eccentricities λ=1,2,3,4,5,which can be used in the calculation of engineering designs.
References
[1]
Chien Wei-zang,Large deflection of a circular damped plate under uniform pressure,Chinese Journal of Physics,7(1948),107-113.
[2]
钱伟长、叶开沉,圆薄板大挠度问题,中国物理学报,10,3(1954),209-238.
[3]
Nash,W.A.and I.D.Cooley,Large deflections of a clamped eiliptical plate subjected to uniform pressure,Journal of,4pplied Mechanics,26(1959),291-293.
[4]
Th.von Karman,Festigkeits Problem in Maschinenbau,Enzyklopadie der Mathema-tischen Wissenschaften,4,27(1910).
[5]
Th.yon Karmán,The engineer grapples iwth non-linear problem,Ball.Amer.Math.Soc.,46(1940),615-683.
[6]
Way,S.,Bending of circular plates with large deflection,A.S.M.E.Transactions,Applied Mechanics,56(1934),627-636.
[7]
Levy,S.,Bending of rectangular plate with large deflections,N.A.C.A.Reports,737(1924).
[8]
McPherson,A.E.,W.Ramburg and S.Levy,Normal pressure tests of circular plates with clamped edges,N.A.C.A.Reports,744 (1942).
[9]
Chien Wei-zang and Yeh Kal-yuan,On the large deflection of rectangular plate,Proceedings of Ⅸ Congress of Applied Mechanics,Bruxelles (1956).
[10]
Weil,N.A.and N.M.Newmark,Large deflections of elliptical plates,Journal of Applied Mechanics,28(1956),21-26.
Relative Articles
[1] WU Feng, GAO Qiang, ZHONG Wan-xie. Iterative Symplectic Perturbation Method for the Dynamic Analysis of Rigid-Flexible Bodies Equations [J]. Applied Mathematics and Mechanics, 2014, 35(4): 341-352. doi: 10.3879/j.issn.1000-0887.2014.04.001
[2] YANG Xiao, WANG Chen. Nonlinear Mathematical Model for Large Deflection of Incompressible Saturated Poroelastic Beams [J]. Applied Mathematics and Mechanics, 2007, 28(12): 1417-1424.
[3] HE Xiao-ting, CHEN Shan-lin. Biparametric Perturbation Solutions of the Large Deflection Problem of Cantilever Beams [J]. Applied Mathematics and Mechanics, 2006, 27(4): 404-410.
[4] HOU Chao-sheng, ZHANG Shou-kai, LIN Feng. Cublic Spline Solutions of Axisymmetrical Nonlinear Bending and Buckling of Circular Sandwich Plates [J]. Applied Mathematics and Mechanics, 2005, 26(1): 120-126.
[5] LIU Bao-guo, YIN Xue-gang, JIAN Kai-lin, WU Yong. Perturbation Transfer Matrix Method for Eigendata of One-Dimensional Structural System With Parameter Uncertainties [J]. Applied Mathematics and Mechanics, 2003, 24(7): 708-714.
[6] CHIEN Wei-zang. Second Order Approximation Solution of Nonlinear Large Deflection Problem of Yongjiang Railway Bridge in Ningbo [J]. Applied Mathematics and Mechanics, 2002, 23(5): 441-451.
[7] LIU Yan-qiang. Method of Equilibrium Differential Equation for Analysis of Strength of Large Deflection Drill String [J]. Applied Mathematics and Mechanics, 2000, 21(11): 1165-1171.
[8] Gan Hong. Numerical Analysis of theLarge Deflection of an Elastic-Plastic Beam [J]. Applied Mathematics and Mechanics, 2000, 21(6): 633-639.
[9] Yin Bangxin. Iterative Method on Large Deflection Nonlinear Problem of Laminated Composite Shallow Shells and Plates [J]. Applied Mathematics and Mechanics, 1999, 20(7): 721-728.
[10] Lü Anjun, Cao Zhiyuan. Elasto-Plastic Coupled Analysis of Buried Structure and Soil Medium by Perturbational Semi-Analytic Method [J]. Applied Mathematics and Mechanics, 1998, 19(4): 335-339.
[11] Qian Rengji. A Modified Hellinger-Reissner Variational Functional Including only Two Independent Variables for Large Displacement of Thin Shallow Shell [J]. Applied Mathematics and Mechanics, 1997, 18(7): 617-624.
[12] Wang Jiaxin, Liu Jie. Large Deflection Problem of Thin Orthotropic Circular Plate on Elastic Foundation with Variable Thickness under Uniform Pressure [J]. Applied Mathematics and Mechanics, 1996, 17(5): 455-463.
[13] Wang Ming-qi, Dai Shi-qiang. Computer Algebra-Perturbation Solution to a Nonlinear Wave Equation [J]. Applied Mathematics and Mechanics, 1995, 16(5): 403-408.
[14] Qiao Zong-chun. Application of the Modified Method of Multiple Scales to Solving the Problem of a Thin Clamped Circular Plate a Very Large Deflection [J]. Applied Mathematics and Mechanics, 1993, 14(10): 903-912.
[15] Ji Zhen-yi, Yeh Kai-yuan. General Solution for Large Deflection Problems of Nonhomogeneous Circular Plates on Elastic Foundation [J]. Applied Mathematics and Mechanics, 1992, 13(11): 951-962.
[16] Wu Yi, Ren Wen-min, Zhang Wei. Perturbation Formulation of Continuation Method Including Limit and Bifurcation Points [J]. Applied Mathematics and Mechanics, 1992, 13(9): 785-794.
[17] Luan Feng, Yu Tong-xi. An Analysis of the Large Deflection of an Elastic-Plastic Cantilever Subjected to an Inclined Concentrated Force [J]. Applied Mathematics and Mechanics, 1991, 12(6): 515-522.
[18] Cheng Chang-jun, Ning Jian-guo. Elastic Instability of an Orthotropic Elliptic Plate [J]. Applied Mathematics and Mechanics, 1991, 12(4): 331-338.
[19] Dai Shi-qiang. On the Method of Orthogonality Conditions for Solving the Problem of Large Deflection of Circular Plate [J]. Applied Mathematics and Mechanics, 1991, 12(7): 579-586.
[20] Su Xu-min, Zhao Zu-wu. Large Deflection Analysis of Rectangular Plates by Combined Perturbation and Finite Strip Method [J]. Applied Mathematics and Mechanics, 1991, 12(1): 51-54.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 16.6 % FULLTEXT : 16.6 % META : 81.8 % META : 81.8 % PDF : 1.6 % PDF : 1.6 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 8.6 % 其他 : 8.6 % China : 0.3 % China : 0.3 % India : 0.5 % India : 0.5 % Singapore : 0.2 % Singapore : 0.2 % 上海 : 0.1 % 上海 : 0.1 % 兰州 : 0.1 % 兰州 : 0.1 % 包头 : 0.1 % 包头 : 0.1 % 北京 : 2.5 % 北京 : 2.5 % 南京 : 0.6 % 南京 : 0.6 % 南宁 : 0.1 % 南宁 : 0.1 % 台州 : 0.2 % 台州 : 0.2 % 哥伦布 : 0.2 % 哥伦布 : 0.2 % 大连 : 0.4 % 大连 : 0.4 % 天津 : 0.1 % 天津 : 0.1 % 太原 : 0.1 % 太原 : 0.1 % 广州 : 0.1 % 广州 : 0.1 % 弗吉 : 0.1 % 弗吉 : 0.1 % 张家口 : 1.8 % 张家口 : 1.8 % 扬州 : 0.1 % 扬州 : 0.1 % 杭州 : 0.1 % 杭州 : 0.1 % 洛杉矶 : 0.1 % 洛杉矶 : 0.1 % 深圳 : 0.3 % 深圳 : 0.3 % 湖州 : 0.1 % 湖州 : 0.1 % 烟台 : 0.1 % 烟台 : 0.1 % 石家庄 : 0.3 % 石家庄 : 0.3 % 芒廷维尤 : 8.7 % 芒廷维尤 : 8.7 % 芝加哥 : 0.9 % 芝加哥 : 0.9 % 苏州 : 0.1 % 苏州 : 0.1 % 荆州 : 0.1 % 荆州 : 0.1 % 葫芦岛 : 0.1 % 葫芦岛 : 0.1 % 衢州 : 0.2 % 衢州 : 0.2 % 西宁 : 71.1 % 西宁 : 71.1 % 西安 : 0.1 % 西安 : 0.1 % 贵阳 : 0.5 % 贵阳 : 0.5 % 长沙 : 0.4 % 长沙 : 0.4 % 鞍山 : 0.1 % 鞍山 : 0.1 % 鹤壁 : 0.6 % 鹤壁 : 0.6 % 其他 China India Singapore 上海 兰州 包头 北京 南京 南宁 台州 哥伦布 大连 天津 太原 广州 弗吉 张家口 扬州 杭州 洛杉矶 深圳 湖州 烟台 石家庄 芒廷维尤 芝加哥 苏州 荆州 葫芦岛 衢州 西宁 西安 贵阳 长沙 鞍山 鹤壁