Cheng Chang-jun. Bending of Thick Plates with a Concentrated Load[J]. Applied Mathematics and Mechanics, 1981, 2(5): 485-494.
Citation:
Cheng Chang-jun. Bending of Thick Plates with a Concentrated Load[J]. Applied Mathematics and Mechanics, 1981, 2(5): 485-494.
Cheng Chang-jun. Bending of Thick Plates with a Concentrated Load[J]. Applied Mathematics and Mechanics, 1981, 2(5): 485-494.
Citation:
Cheng Chang-jun. Bending of Thick Plates with a Concentrated Load[J]. Applied Mathematics and Mechanics, 1981, 2(5): 485-494.
Bending of Thick Plates with a Concentrated Load
Received Date: 1981-06-06
Publish Date:
1981-10-15
Abstract
In this paper, according to the simplified theory of [1], the bending of rectangular plates with two opposite edges simply supported and other two opposite edges being arbitrary under the action of a concentrated load is treated by means of properties of two-variable-function and the method of series, The effect of transverse shearing forces on the bending of plates is considered. When the thickness h of plates is small, and the term, whose orders are more than order of h2 are neglected, then the results agree with the solutions corresponding to the problem of thin plates, At the end, the solutions of the bending problem of plates with arbitrary linear distributed load are also obtained.
References
[1]
苗夭德、程昌钧,关于弹性板弯曲变形的Reissner理论,应用数学和力学,1.2(1980).221-235
[2]
Геьфанд,И.М.н Шилов,Г.Е.,Общнные Фунхччч ч Дечсмечя наб Нчмч,Физматгнз(1958).
[3]
Timoshenko,S.,and Woinowsky-Krieger,S.,Theory of Plates and Shells,MeGraw-Hill,New York(1959).
[4]
Гальиерин,И.,Веебечче е Теорчх Обобщенных Функччч.Москва(1954).
Relative Articles
[1] WANG Xue, ZHAO Weidong. Geometrically Nonlinear Analysis of Functionally Graded Beams Under Thermomechanical Loading [J]. Applied Mathematics and Mechanics, 2019, 40(5): 508-517. doi: 10.21656/1000-0887.390201
[2] ZHAO Wei-dong, GAO Shi-wu, MA Hong-wei. Thermomechanical Stability Analysis of Shallow Spherical Shells [J]. Applied Mathematics and Mechanics, 2017, 38(10): 1146-1154. doi: 10.21656/1000-0887.370320
[3] Mohsin Islam, Sadek Hossain Mallik, Mridula Kanoria. Study of Dynamic Response in a Two Dimensional Transversely Isotropic Thick Plate With Spatially Varying Heat Sources and Body Forces [J]. Applied Mathematics and Mechanics, 2011, 32(10): 1226-1240. doi: 10.3879/j.issn.1000-0887.2011.10.008
[4] H. Secil Artem, Levent Aydin. Exact Solution and Dynamic Buckling Analysis of a Beam-Column System Having the Elliptic Type Loading [J]. Applied Mathematics and Mechanics, 2010, 31(10): 1249-1255. doi: 10.3879/j.issn.1000-0887.2010.10.012
[5] LIU You-wen, XIE Chao, JIANG Chun-zhi, FANG Qi-hong. Analytical Solution for a Strained Reinforcement Layer Bonded to a Lip-Shaped Crack Under Remote Mode Ⅲ Uniform Load and a Concentrated Load [J]. Applied Mathematics and Mechanics, 2010, 31(9): 1075-1088. doi: 10.3879/j.issn.1000-0887.2010.09.008
[6] Rajneesh Kumar, Aseem Miglani, N. R. Garg. Elastodynamic Analysis of an Anisotropic Liquid-Saturated Porous Medium Due to Mechanical Sources [J]. Applied Mathematics and Mechanics, 2007, 28(8): 939-948.
[7] M. K. Ghosh, M. Kanoria. Displacements and Stresses in a Composite Mult-Layered Media Due to Varying Temperature and Concentrated Load [J]. Applied Mathematics and Mechanics, 2007, 28(6): 724-734.
[8] HAO Ji-ping, YAN Xin-li. Exact Solution of Large Deformation Basic Equations of Circular Membrane Under Central Force [J]. Applied Mathematics and Mechanics, 2006, 27(10): 1169-1172.
[9] LIU Han-bing, LIU Wen-hui, ZHANG Yun-long. Calculation Analysis of Shearing Slip for Steel-Concrete Composite Beam Under Concentrated Load [J]. Applied Mathematics and Mechanics, 2005, 26(6): 677-682.
[10] CHEN Shan-lin, ZHENG Zhou-lian. Large Deformation of Circular Membrane Under the Concentrated Force [J]. Applied Mathematics and Mechanics, 2003, 24(1): 25-28.
[11] Bian Yuhong. The Bending of Set-Squares with One Free Oblique Edge under a Concentrated Load [J]. Applied Mathematics and Mechanics, 1997, 18(7): 647-655.
[12] Xu Qilou, Ji Tonggeng. Bending Solution of a Rectangular Plate with One Edge Built-in and One Corner Point Supported Subjected to Uniform Load [J]. Applied Mathematics and Mechanics, 1996, 17(12): 1091-1100.
[13] Zheng Jian-long. Dynamic Response of Elastic Layer on Stiff Foundation under Time Harmonic Surface Vertical Concentrated Load [J]. Applied Mathematics and Mechanics, 1987, 8(10): 867-875.
[14] Wang Jin-ying. Nonlinear Problems of Circular Plates with Variable Thickness under Central Concentrated Load [J]. Applied Mathematics and Mechanics, 1987, 8(3): 247-252.
[15] Zhu Yan-bin, Fu Bao-lian. Further Research on the Bending of the Cantilever Rectangular Plates under a Concentrated Load [J]. Applied Mathematics and Mechanics, 1986, 7(10): 917-928.
[16] Lin Xiao-song, Yuan Wen-bo. Solution of Bending of Cantilever Rectangular Plates under Uniform Surface-Load by the Method of Two-Direction Trigonometric Series [J]. Applied Mathematics and Mechanics, 1985, 6(8): 735-744.
[17] Lin Peng-cheng. Bending of Corner-Supported Rectangular Plate under Concentrated Load [J]. Applied Mathematics and Mechanics, 1984, 5(3): 447-456.
[18] Lin Peng-cheng. Bending of Cantilever Rectangular Plate with Concentrated Load [J]. Applied Mathematics and Mechanics, 1982, 3(2): 249-258.
[19] Chang Fo-van. Bending of Rectangular Cantilever Plate with Discontinuous Loading [J]. Applied Mathematics and Mechanics, 1981, 2(4): 369-377.
[20] Chang Fo-van. Bending of Uniformly Loaded Cantilever Rectangular Plates [J]. Applied Mathematics and Mechanics, 1980, 1(3): 349-362.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 15.3 % FULLTEXT : 15.3 % META : 82.9 % META : 82.9 % PDF : 1.8 % PDF : 1.8 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 3.9 % 其他 : 3.9 % Singapore : 0.4 % Singapore : 0.4 % 上海 : 0.7 % 上海 : 0.7 % 丽水 : 0.1 % 丽水 : 0.1 % 北京 : 4.7 % 北京 : 4.7 % 咸阳 : 0.1 % 咸阳 : 0.1 % 哥伦布 : 0.1 % 哥伦布 : 0.1 % 宿州 : 0.1 % 宿州 : 0.1 % 巴中 : 0.4 % 巴中 : 0.4 % 张家口 : 2.0 % 张家口 : 2.0 % 昆明 : 0.3 % 昆明 : 0.3 % 洛杉矶 : 0.1 % 洛杉矶 : 0.1 % 深圳 : 0.3 % 深圳 : 0.3 % 湖州 : 0.1 % 湖州 : 0.1 % 芒廷维尤 : 7.4 % 芒廷维尤 : 7.4 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 78.8 % 西宁 : 78.8 % 郑州 : 0.3 % 郑州 : 0.3 % 其他 Singapore 上海 丽水 北京 咸阳 哥伦布 宿州 巴中 张家口 昆明 洛杉矶 深圳 湖州 芒廷维尤 苏州 西宁 郑州