Liu Hsien-chih. Some Essential Features and Its Several Applications of a Degenerated Four-Leaved Rose Curve[J]. Applied Mathematics and Mechanics, 1982, 3(2): 131-143.
Citation:
Liu Hsien-chih. Some Essential Features and Its Several Applications of a Degenerated Four-Leaved Rose Curve[J]. Applied Mathematics and Mechanics, 1982, 3(2): 131-143.
Liu Hsien-chih. Some Essential Features and Its Several Applications of a Degenerated Four-Leaved Rose Curve[J]. Applied Mathematics and Mechanics, 1982, 3(2): 131-143.
Citation:
Liu Hsien-chih. Some Essential Features and Its Several Applications of a Degenerated Four-Leaved Rose Curve[J]. Applied Mathematics and Mechanics, 1982, 3(2): 131-143.
Some Essential Features and Its Several Applications of a Degenerated Four-Leaved Rose Curve
Received Date: 1980-05-30
Publish Date:
1982-04-15
Abstract
This paper reports the investigation of possibly a new curve that the author has met in mechanics research, which has hitherto not yet been found in the most popular mathematical literature, nevertheless the references, which he had read, rather limited for anybody. Besides some noticeable properties of the curve, we have given only two instances which the author, by chance, has met personally in technical literature, even in these case, there still fails a detailed account from a mathematical point of view.
References
[1]
Smith,P.F.,Gale,A.S.& Neelly.J.H.,New Analytic Geometry,U.S.A.
[2]
Granville,W.A.,Elements of the Differential and Integral Calculus,Ginn and Company,U.S.A.
[3]
刘先志,平面曲轴八缸v型内燃机二阶往复惯性力分析平衡法,力学,3 (1976).
[4]
刘先志,平面曲轴八缸V型内燃机二阶往复惯性力分析平衡法的图解,力学,4(1976).
[5]
刘先志,平面曲轴八缸V型内燃机二阶往复惯性力二轴平衡法分析,力学学报,2(1978)
[6]
刘先志,平面曲轴八缸V型内燃机二阶往复惯性力二轴平衡法直接推导及其滑块平衡方案,应用数学和力学,1. 2 (1980).
[7]
Blochinzew,D.I.,Grundlagen der Quantem Mechanik,Berlin,(1958),p.171.
[8]
Moelwyn-Hughes,Physical Chemistry,p.171,London(1961).
[9]
Slater,John C.,Quantem Theory of Matter,(195O),p.119.
Relative Articles
[1] WANG Chengyan, LIU Guanting. The Antiplane Problem of a Lip-Shaped Orifice With 4 Edge Cracks in 1D Hexagonal Piezoelectric Quasicrystal [J]. Applied Mathematics and Mechanics, 2024, 45(7): 886-897. doi: 10.21656/1000-0887.440346
[2] GAO Yuanyuan, LIU Guanting. Analytical Solutions to Problems of Elliptical Holes With 4 Edge Cracks in 1D Orthorhombic Quasicrystals [J]. Applied Mathematics and Mechanics, 2019, 40(2): 210-222. doi: 10.21656/1000-0887.390032
[3] FENG Yi-hu, LIU Shu-de, MO Jia-qi. Generalized Solution to a Class of Singularly Perturbed Problem of Nonlinear Reaction Diffusion Equation With Two Parameters [J]. Applied Mathematics and Mechanics, 2017, 38(5): 561-569. doi: 10.21656/1000-0887.370177
[4] HE Gui-tian, LUO Mao-kang. Dynamic Behavior of Fractional Order Duffing Chaotic System and Its Synchronization Via Single Active Control [J]. Applied Mathematics and Mechanics, 2012, 33(5): 539-552. doi: 10.3879/j.issn.1000-0887.2012.05.003
[5] MO Jia-qi. On a Class of Singular Perturbation Solution for Semilinear Equtions of Fourth Order [J]. Applied Mathematics and Mechanics, 2009, 30(11): 1369-1373. doi: 10.3879/j.issn.1000-0887.2009.11.011
[6] ZHENG Chang-liang, LI Li-hua, ZHONG Wan-xie. On the Stability Analysis of Plates and Shells Using a Quadrilateral,16-Degrees of Freedom Plat Shell Element DKQ16 [J]. Applied Mathematics and Mechanics, 2004, 25(3): 221-227.
[7] HUANG Ruo-yu, ZHENG Chang-liang, ZHONG Wan-xie, YAO Wei-an. A New Quadrilateral Thin Plate Element Based on the Membrane-Plate Similarity Theory [J]. Applied Mathematics and Mechanics, 2002, 23(3): 239-248.
[8] LIU Qi-lin, MO Jia-qi. The Asymptotic Behavior of Solution for the Singularly Perturbed Initial Boundary Value Problems of the Reaction Diffusion Equations in a Part of Domain [J]. Applied Mathematics and Mechanics, 2001, (10): 1075-1080.
[9] TAO Fang-ming, TANG Ren-ji. The Crack-Inclusion Interaction and the Analysis of Singularity for the Horizontal Contact [J]. Applied Mathematics and Mechanics, 2001, 22(5): 483-492.
[10] Duan Jiwei, Li Qiguan. 4th Order Spline Wavelets on a Bounded Interval [J]. Applied Mathematics and Mechanics, 2000, 21(4): 393-401.
[11] Xie Heping, Sun Hongquan. The Theory of Fractal Interpolated Surface and Its Applications [J]. Applied Mathematics and Mechanics, 1998, 19(4): 297-306.
[12] A. N. Guz, V. M. Nazarenko, Ⅰ. P. Starodubtsev. On Problems of Fracture of Materials in Compression along Two Internal Parallel Cracks [J]. Applied Mathematics and Mechanics, 1997, 18(6): 483-494.
[13] Chien Wei-zang, Wang Gang. A New Element for Thin Plate of Bending with Curvilinear Boundary——Curvilinear Boundary Quadrilateral Element [J]. Applied Mathematics and Mechanics, 1990, 11(4): 295-300.
[14] Lin Zong-chi, Lin Su-rong. Singular Perturbation of Boundary Value Problem for a Vector Fourth Order Nonlinear Differential Equation [J]. Applied Mathematics and Mechanics, 1988, 9(5): 385-395.
[15] Lin Wu-zhong. Singular Perturbation of Linear Algebraic Equations with Application to Stiff Equations [J]. Applied Mathematics and Mechanics, 1987, 8(6): 513-522.
[16] Cheng Bao-long. Chaotic Behavior of the Measure-Preserving Mappings with Odd Dimension [J]. Applied Mathematics and Mechanics, 1987, 8(9): 833-838.
[17] Li Yong, Wu Chang-chun. A New Quadrilateral Nonconforming Model and Its Convergence [J]. Applied Mathematics and Mechanics, 1986, 7(7): 647-654.
[18] M. J. Chen L. G. Tham, Y. K. Cheung, . Analysis of Thin Parallelogram Plates’ Bending by Spline-Finite-Strip Method [J]. Applied Mathematics and Mechanics, 1984, 5(6): 755-764.
[19] Lu Jian-ke. Circular Welding Problems with a Crack [J]. Applied Mathematics and Mechanics, 1983, 4(5): 679-690.
[20] Lin Zong-chi. Singular Perturbation of General Boundary Va!ue Problem for Higher-Order Elliptic Equation Containing Two-Parameter [J]. Applied Mathematics and Mechanics, 1982, 3(5): 641-652.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 13.1 % FULLTEXT : 13.1 % META : 85.8 % META : 85.8 % PDF : 1.1 % PDF : 1.1 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 9.8 % 其他 : 9.8 % 其他 : 0.1 % 其他 : 0.1 % China : 0.5 % China : 0.5 % [] : 0.1 % [] : 0.1 % 上海 : 0.6 % 上海 : 0.6 % 北京 : 3.7 % 北京 : 3.7 % 十堰 : 0.1 % 十堰 : 0.1 % 南阳 : 0.1 % 南阳 : 0.1 % 厦门 : 0.2 % 厦门 : 0.2 % 咸阳 : 0.1 % 咸阳 : 0.1 % 哈尔滨 : 0.1 % 哈尔滨 : 0.1 % 哥伦布 : 0.1 % 哥伦布 : 0.1 % 唐山 : 0.3 % 唐山 : 0.3 % 嘉兴 : 0.1 % 嘉兴 : 0.1 % 大同 : 0.1 % 大同 : 0.1 % 天津 : 0.5 % 天津 : 0.5 % 常州 : 0.2 % 常州 : 0.2 % 平顶山 : 0.1 % 平顶山 : 0.1 % 广州 : 0.5 % 广州 : 0.5 % 张家口 : 1.5 % 张家口 : 1.5 % 成都 : 0.1 % 成都 : 0.1 % 扬州 : 0.3 % 扬州 : 0.3 % 无锡 : 0.2 % 无锡 : 0.2 % 景德镇 : 0.1 % 景德镇 : 0.1 % 杭州 : 0.4 % 杭州 : 0.4 % 武汉 : 0.3 % 武汉 : 0.3 % 沈阳 : 0.1 % 沈阳 : 0.1 % 波士顿 : 0.1 % 波士顿 : 0.1 % 洛阳 : 0.1 % 洛阳 : 0.1 % 淄博 : 0.2 % 淄博 : 0.2 % 深圳 : 0.5 % 深圳 : 0.5 % 温州 : 0.1 % 温州 : 0.1 % 漯河 : 0.5 % 漯河 : 0.5 % 盐城 : 0.1 % 盐城 : 0.1 % 石家庄 : 0.7 % 石家庄 : 0.7 % 芒廷维尤 : 4.2 % 芒廷维尤 : 4.2 % 苏州 : 0.3 % 苏州 : 0.3 % 葵涌 : 0.1 % 葵涌 : 0.1 % 西宁 : 71.6 % 西宁 : 71.6 % 西安 : 0.2 % 西安 : 0.2 % 郑州 : 1.1 % 郑州 : 1.1 % 长沙 : 0.4 % 长沙 : 0.4 % 驻马店 : 0.1 % 驻马店 : 0.1 % 其他 其他 China [] 上海 北京 十堰 南阳 厦门 咸阳 哈尔滨 哥伦布 唐山 嘉兴 大同 天津 常州 平顶山 广州 张家口 成都 扬州 无锡 景德镇 杭州 武汉 沈阳 波士顿 洛阳 淄博 深圳 温州 漯河 盐城 石家庄 芒廷维尤 苏州 葵涌 西宁 西安 郑州 长沙 驻马店