Tai Tien-min. On Various Variationai Principles in Nonlinear Theory of Elasticity[J]. Applied Mathematics and Mechanics, 1982, 3(5): 585-596.
Citation:
Tai Tien-min. On Various Variationai Principles in Nonlinear Theory of Elasticity[J]. Applied Mathematics and Mechanics, 1982, 3(5): 585-596.
Tai Tien-min. On Various Variationai Principles in Nonlinear Theory of Elasticity[J]. Applied Mathematics and Mechanics, 1982, 3(5): 585-596.
Citation:
Tai Tien-min. On Various Variationai Principles in Nonlinear Theory of Elasticity[J]. Applied Mathematics and Mechanics, 1982, 3(5): 585-596.
On Various Variationai Principles in Nonlinear Theory of Elasticity
Received Date: 1982-01-05
Publish Date:
1982-10-15
Abstract
In the present paper functionals for the various possible main variational principles in the nonlinear theory of e-lasticity are derived from the "full energy principle" and several of them are not found yet in the literatures available. Through the derivation of this paper we suggest a conjecture on the nonexistence of the eleventh and the sixth classes for the variational principles in Table 6.1 of H.C. Hu's monograph [1].
References
[1]
胡海昌著,《弹性力学的变分原理及其应用》,科学出版社(1981).
[2]
郭仲衡著,《非线性弹性理论》,科学出版社(1980).
[3]
郭仲衡,非线性弹性理论变分原理的统一理论,应用数学和力学,1. 1 (1980).
[4]
钱伟长著,《变分法及有限元》,上册,科学出版社(1980).
[5]
Washizu,K.,Variational Methods in Elasticity and Plasticity,Pergamon Press,(1968).
Relative Articles
[1] He Jihuan. Semi-Inverse Method and Generalized Variational Principles With Multi-Variables in Elasticity [J]. Applied Mathematics and Mechanics, 2000, 21(7): 721-731.
[2] Song Yanqi, Chen Zhida. Variational Principles of Asymmetric Elasticity Theory of Finite Deformation [J]. Applied Mathematics and Mechanics, 1999, 20(11): 1115-1120.
[3] Fu Baolian. Coupled Variational Principles and Generalized Coupled Variational Principles in Photoelasticity [J]. Applied Mathematics and Mechanics, 1996, 17(1): 39-44.
[4] Zhao Yu-xiang, Gu Xiang-zhen, Li Huan-qiu. Generalized Variational Principles of Symmetrical Elasticity Problem of Large Deformation [J]. Applied Mathematics and Mechanics, 1994, 15(9): 767-774.
[5] Fu Bao-lian. The Variational Principles of Coupled Systems in Photoelasticity [J]. Applied Mathematics and Mechanics, 1994, 15(1): 37-47.
[6] Zhao Guo-qiao. Rated Generalized Sub-Region Variational Principles in Nonlinear Elastodynamics [J]. Applied Mathematics and Mechanics, 1993, 14(12): 1069-1075.
[7] Zhang Ru-qing. Elastic Dynamics Variational Principle for Nonlinear Elastic Body [J]. Applied Mathematics and Mechanics, 1992, 13(1): 1-9.
[8] Pi Dao-hua, Jin Li-hua. Structural Function Theory of Generalized Variational Principles for Linear Elastic Materials with Voids [J]. Applied Mathematics and Mechanics, 1991, 12(6): 531-540.
[9] Hsueh Dah-wei. Generalized Variational Principles on Nonlinear Theory of Elasticity with Finite Displacements [J]. Applied Mathematics and Mechanics, 1991, 12(3): 209-218.
[10] Li Long-yuan. Discussion of Critical Load in Nonlinear Stability Analysis and Suggestion of Variational Principle of Solving Critical Loads [J]. Applied Mathematics and Mechanics, 1990, 11(3): 275-277.
[11] Chien Wei-zhang. Variational Principles and Generalized Variational Principles for Nonlinear Elasticity with Finite Dispiacemant [J]. Applied Mathematics and Mechanics, 1988, 9(1): 1-11.
[12] Chien Wei-zang. Variational Principles in Elasticity with Nonlinear Stress-Strain Relation [J]. Applied Mathematics and Mechanics, 1987, 8(7): 567-577.
[13] Hu Cheng-dong. The Generalized Variational Principles about Blending Energy Form of Non-Linear Elasticity [J]. Applied Mathematics and Mechanics, 1986, 7(11): 1021-1031.
[14] Liu Cheng-qun. Note on the Critical Variational State in Elasticity Theory [J]. Applied Mathematics and Mechanics, 1984, 5(6): 895-901.
[15] Zheng Quan-shui. Extended Variational Principle in Non-Linear Theory of Elasticity [J]. Applied Mathematics and Mechanics, 1984, 5(2): 205-216.
[16] Chien Wei-zang. Classification of Variational Principles in Elasticity [J]. Applied Mathematics and Mechanics, 1984, 5(6): 765-770.
[17] Chien Wei-zhang. Method of High-Order Lagrange Multiplier and Generalized Variational Principles of Elasticity with More General Forms of Functionals [J]. Applied Mathematics and Mechanics, 1983, 4(2): 137-150.
[19] Tai Tien-min. Various Reciprocal Theorems and Variational Principles in the Theories of Nonlocal Micropolar Linear Elastic Mediums [J]. Applied Mathematics and Mechanics, 1980, 1(1): 89-106.
[20] Guo Zhong-heng. Unified Theory of Variational Principles in Non-linear Theory of Elasticity [J]. Applied Mathematics and Mechanics, 1980, 1(1): 5-23.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 14.0 % FULLTEXT : 14.0 % META : 85.2 % META : 85.2 % PDF : 0.9 % PDF : 0.9 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 5.3 % 其他 : 5.3 % 其他 : 0.7 % 其他 : 0.7 % China : 1.0 % China : 1.0 % 上海 : 0.3 % 上海 : 0.3 % 休斯顿 : 0.2 % 休斯顿 : 0.2 % 北京 : 2.4 % 北京 : 2.4 % 咸阳 : 0.2 % 咸阳 : 0.2 % 哥伦布 : 0.3 % 哥伦布 : 0.3 % 天津 : 0.2 % 天津 : 0.2 % 张家口 : 3.2 % 张家口 : 3.2 % 昆明 : 0.2 % 昆明 : 0.2 % 武汉 : 0.2 % 武汉 : 0.2 % 洛杉矶 : 0.5 % 洛杉矶 : 0.5 % 深圳 : 0.2 % 深圳 : 0.2 % 石家庄 : 0.5 % 石家庄 : 0.5 % 芒廷维尤 : 18.6 % 芒廷维尤 : 18.6 % 苏州 : 0.2 % 苏州 : 0.2 % 西宁 : 65.2 % 西宁 : 65.2 % 郑州 : 0.3 % 郑州 : 0.3 % 长治 : 0.2 % 长治 : 0.2 % 马鞍山 : 0.2 % 马鞍山 : 0.2 % 其他 其他 China 上海 休斯顿 北京 咸阳 哥伦布 天津 张家口 昆明 武汉 洛杉矶 深圳 石家庄 芒廷维尤 苏州 西宁 郑州 长治 马鞍山