Citation: | HUANG Si-xun, DU Hua-dong, HAN Wei. Generalized Variational Data Assimilation Method and Numerical Experiment for Non-Differential System[J]. Applied Mathematics and Mechanics, 2004, 25(10): 1061-1066. |
[1] |
LeDimet F,Talagrand O.Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects[J].Tellus, Ser A,1986,38(2):97—110.
|
[2] |
HUANG Si-xun, HAN Wei, WU Rong-sheng. Theoretical analyses and numerical experiments of variational assimilation for one-dimensional ocean temperature model[J].Science in China,Ser D,2004,47(7):630—638. doi: 10.1360/02yd0195
|
[3] |
HUANG Si-xun, HAN Wei. Application of regularization in ill-posed problems of ocean variational data assimilation with local observation[A].In:CHIEN Wei-zang Ed.The Fourth International Conference on Nonlinear Mechanics(ICNM-Ⅳ)[C].Shanghai:Shanghai University Press,2002,840—844.
|
[4] |
Zou X. Tangent linear and adjoint of “on-off" process and their feasibility for use in 4-dimensional data assimilation[J].Tellus, Ser A,1997,49(1):3—31. doi: 10.1034/j.1600-0870.1997.00002.x
|
[5] |
Zhang S, Zou X, Ahlquist J E,et al. Use of differentiable and non-differentiable optimization algorithms for variational data assimilation with discontinuous cost functions[J].Mon Wea Rev,2000,128(2):4031—4044. doi: 10.1175/1520-0493(2000)129<4031:UODANO>2.0.CO;2
|
[6] |
Xu Q. Generalized adjoint for physical processes with parameterized discontinuities—Part Ⅰ: basic issues and heuristic example[J].J Atmos Sci,1996,53(8):1123—1142. doi: 10.1175/1520-0469(1996)053<1123:GAFPPW>2.0.CO;2
|
[7] |
Verlinde J,Cotton W R.Fitting microphysical observations of non-steady convective clouds to a numerical model: an application of the adjoint technology of data assimilation to a kinematical model[J].Mon Wea Rev,1993,121(10):2776—2793. doi: 10.1175/1520-0493(1993)121<2776:FMOONC>2.0.CO;2
|
[8] |
王佳峰.关于含有"开关"的物理过程的变分资料同化问题研究[D].博士论文.北京:中国科学院大气物理研究所,2001.
|
[1] | YANG Sen-sen, MA Yong-qi, FENG Wei. A Hybrid Generalized Element Method Based on H-R Variational Principle[J]. Applied Mathematics and Mechanics, 2013, 34(3): 272-281. doi: 10.3879/j.issn.1000-0887.2013.03.007 |
[2] | YUAN Yi-rang, LI Chang-feng, SUN Tong-jun. Modified Characteristic Finite Difference Fractional Steps Method for Moving Boundary Value Problem of Percolation Coupled System[J]. Applied Mathematics and Mechanics, 2012, 33(2): 177-194. doi: 10.3879/j.issn.1000-0887.2012.02.004 |
[3] | YUAN Yi-rang, LI Chang-feng, YANG Cheng-shun, HAN Yu-ji. Characteristic Finite Difference Method and Application for Moving Boundary Value Problem of the Coupled System[J]. Applied Mathematics and Mechanics, 2008, 29(5): 551-563. |
[4] | TENG Jia-jun, ZHANG Gui, HUANG Si-xun. Some Theoretical Problems on Variational Data Assimilation[J]. Applied Mathematics and Mechanics, 2007, 28(5): 581-591. |
[5] | LÜ Xian-qing, WU Zi-ku, GU Yi, TIAN Ji-wei. Study on the Adjoint Method in Data Assimilation and the Related Problems[J]. Applied Mathematics and Mechanics, 2004, 25(6): 581-590. |
[6] | FENG Wen-jie, ZOU Zhen-zhu. A Variation Method for Acoustic Wave Imaging of Two Dimensional Targets[J]. Applied Mathematics and Mechanics, 2003, 24(6): 619-623. |
[7] | LUO Shao-ming, ZHANG Xiang-wei, CAI Yong-chang. The Variational Principle and Application of Numerical Manifold Method[J]. Applied Mathematics and Mechanics, 2001, 22(6): 587-592. |
[8] | LUO Shao-ming, ZHANG Xiang-wei, CAI Yong-chang. The Variational Principles and Application of Nonlinear Numerical Manifold Method[J]. Applied Mathematics and Mechanics, 2000, 21(12): 1265-1270. |
[9] | Wu Yuliang. Adjoint System Integrals for Optimal Space N-Impulse Transfer[J]. Applied Mathematics and Mechanics, 2000, 21(4): 389-392. |
[10] | Shi Zhifei, Huang Shuping, Zhang Zimao. Variational Principles of Fluid Full-Filled Elastic Solids[J]. Applied Mathematics and Mechanics, 1999, 20(3): 249-255. |
[11] | Luo Shaokai. Relativistic Variation Principles and Equation of Motionfor Variable Mass Controllable Mechanical Systems[J]. Applied Mathematics and Mechanics, 1996, 17(7): 645-653. |
[12] | Wang Zhi-guo, Tang Li-min. Hamiltonian systems in Elasticity and Their Variational Principles[J]. Applied Mathematics and Mechanics, 1995, 16(2): 117-122. |
[13] | Deng Zi-chen, Zhong Wan-xie. The Application of the Variational Principle in the Constrained Control System[J]. Applied Mathematics and Mechanics, 1994, 15(6): 489-494. |
[14] | Fu Bao-lian. The Variational Principles of Coupled Systems in Photoelasticity[J]. Applied Mathematics and Mechanics, 1994, 15(1): 37-47. |
[15] | Tian Gen-bao, Lin Zong-chi. Singularly Perturbed Methods in the Theory of Optimal Control of Systems Governed by Partial Differential Equations[J]. Applied Mathematics and Mechanics, 1994, 15(8): 679-684. |
[16] | Zhao Yu-xiang, Gu Xiang-zhen, Song Xi-tai. Large Deformation Symmetrical Elasticity Problems Solved by the Variational Method[J]. Applied Mathematics and Mechanics, 1993, 14(8): 679-685. |
[17] | Dai Tian-min, Fu Ming-fu, Lin Zhong-xiang, Yang De-pin. Variational Methods for the Problems of Nonconservative Force Fields in the Micropolar Elastodynamics[J]. Applied Mathematics and Mechanics, 1987, 8(11): 943-952. |
[18] | Hsueh Dah-wei. A Method for Establishing Generalized Variational Principle[J]. Applied Mathematics and Mechanics, 1985, 6(6): 481-488. |
[20] | Tai Tien-min. Various Reciprocal Theorems and Variational Principles in the Theories of Nonlocal Micropolar Linear Elastic Mediums[J]. Applied Mathematics and Mechanics, 1980, 1(1): 89-106. |