SHEN Fang, TAN Wen-chang, ZHAO Yao-hua, T. Masuoka. Decay of Vortex Velocity and Diffusion of Temperature in a Generalized Second Grade Fluid[J]. Applied Mathematics and Mechanics, 2004, 25(10): 1053-1060.
Citation: SHEN Fang, TAN Wen-chang, ZHAO Yao-hua, T. Masuoka. Decay of Vortex Velocity and Diffusion of Temperature in a Generalized Second Grade Fluid[J]. Applied Mathematics and Mechanics, 2004, 25(10): 1053-1060.

Decay of Vortex Velocity and Diffusion of Temperature in a Generalized Second Grade Fluid

  • Received Date: 2002-12-29
  • Rev Recd Date: 2004-03-12
  • Publish Date: 2004-10-15
  • The fractional calculus approach in the constitutive relationship model of viscoelastic fluid was introduced.The velocity and temperature fields of the vortex flow of a generalized second fluid with fractional derivative model were described by fractional partial differential equations.Exact analytical solutions of these differential equations were obtained by using the discrete Laplace transform of the sequential fractional derivatives and generalized Mittag-Leffler function.The influence of fractional coefficient on the decay of vortex velocity and diffusion of temperature was also analyzed.
  • loading
  • [1]
    余钊圣,林建忠.粘弹性二阶流体混合层流场拟序结构的数值研究[J]. 应用数学和力学,1998,19(8):671—677.
    [2]
    Fetecau C,Fetacau Corina,Zierep J.Decay of a potential vortex and propagation of a heat wave in a second grade fluid[J].International Journal of Non-Linear Mechanics,2002,37(6):1051—1056. doi: 10.1016/S0020-7462(01)00028-2
    [3]
    Bagley R L. A theoretical basis for the application of fractional calculus to viscoelasticity[J].Journal of Rheology,1983,27(3):201—210. doi: 10.1122/1.549724
    [4]
    Friedrich C H R.Relaxation and retardation function of the Maxwell model with fractional derivatives[J].Rheol Acta,1991,30(2):151—158. doi: 10.1007/BF01134604
    [5]
    黄军旗,何光渝, 刘慈群. 双筒流变仪中广义二阶流体运动分析[J].中国科学,A辑,1996,26(10):912—920.
    [6]
    何光渝,黄军旗,刘慈群.广义二阶流体管内轴向流动[J].应用数学和力学, 1995,16(9):767—773.
    [7]
    徐明瑜,谭文长.广义二阶流体分数阶反常扩散速度场、应力场及涡旋层的理论分析[J].中国科学,A辑,2001,31(7):626—638.
    [8]
    徐明瑜,谭文长.粘弹性材料本构方程的广义分数阶单元网格表述及其广义解[J].中国科学,A辑,2002,32(8):673—681.
    [9]
    谭文长,鲜峰,魏兰.广义二阶流体非定常Couette流动的精确解[J].科学通报, 2002,47(16):1226—1229.
    [10]
    TAN Wen-chang,XU Ming-yu.The impulsive motion of flat plate in a general second grade fluid[J].Mechanics Research Communication,2002,29(1):3—9. doi: 10.1016/S0093-6413(02)00223-9
    [11]
    TAN Wen-chang,XU Ming-yu.Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model[J].Acta Mechanica Sinica,2002,18(4):342—349. doi: 10.1007/BF02487786
    [12]
    TAN Wen-chang,PAN Wen-xiao,XU Ming-yu. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates[J].International Journal of Non-Linear Mechanics,2003,38(5):645—650. doi: 10.1016/S0020-7462(01)00121-4
    [13]
    李健,江体乾.带分数导数的粘弹性流体本构方程的研究[A].见:全国流变学学术会议论文集[C].广州:华南理工大学出版社,1993.
    [14]
    Song D Y, Jiang T Q. Study on the constitutive equation with fractional derivative for the viscoelastic fluids-modified Jeffreys model and its application [J].Rheologica Acta, 1998,27(5):512—517.
    [15]
    Podlubny I.Fractional Differential Equations[M].San Diego: Academic Press, 1999, 1—303.
    [16]
    Paradisi P, Cesari R, Mainardi R,et al. The fractional Fick's law for non-local transport processes[J].Physica A, 2001,293(1):130—142. doi: 10.1016/S0378-4371(00)00491-X
    [17]
    奥齐西克.热传导[M].俞昌铭 译.北京: 高等教育出版社, 1983, 563—715.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2946) PDF downloads(578) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return