Gerard A. MAUGIN, Bemard COLLET, Joël POUGET. Electromechanical Waves in Ceramics——Numerical Simulation[J]. Applied Mathematics and Mechanics, 1985, 6(12): 1043-1052.
Citation: Gerard A. MAUGIN, Bemard COLLET, Joël POUGET. Electromechanical Waves in Ceramics——Numerical Simulation[J]. Applied Mathematics and Mechanics, 1985, 6(12): 1043-1052.

Electromechanical Waves in Ceramics——Numerical Simulation

  • Received Date: 1985-04-07
  • Publish Date: 1985-12-15
  • A simple one-dimensional model is used to simulate numerically the propagation of linear and nonlinear waves in a deformable ceramic. The nummrical scheme used provides the response in stress or strain and electric field within the sample and the voltage at a resistive external circuit connecting the two faces of the sample. Space-time diagrams of the propagation are obtained for various mechanical loads. The voltage response obtained agrees well with experimental results in the linear regime. In the nonlinear one, the steepening of the electromechanical wave yielding a shock wave is exhibited.
  • loading
  • [1]
    Maugin,G.A.(Editor),The Mechanical Behavior of Electromagnetic Solid Continua(Proceedings IUTAM-IUPAP Symposium,Paris,July 1983) North-Holland,Amsterdam(1984).
    [2]
    Holland,R.and E.P.Eernisse,Design of Resonant Piezoelectric Devices,M.I.T.Press,Cambridge,Mass(1969).
    [3]
    Lysne,P.C.and L.C.Bartel,Electromechanical response of PZT 65/35 subjected to axial shock loading,J.Applied Physics,46(1975),222-229.
    [4]
    Lysne,P.C.and C.M.Percival,Electric energy generation by shock compression of ferroelectric ceramics,J.Applied Physics,46(1975),1519-1525.
    [5]
    Murri,W.J.,D.R.Curran,C.F.Peterson and R.C.Crewdon,in Adv.High.Press.Res.,Vol.4,Academic Press.New York(1974),1-163.
    [6]
    Chen,P.J.,Growth and decay of waves in solids,in Handbuch der Physik,Bd.Ⅶ-3,ed.C.A.Truesdell,Springer-Verlag,Berlin(1973),303-402.
    [7]
    McCarthy,M.F.,Singular surfaces and waves,in Continuum Physics,ed.A.C.Eringen,Vol.Ⅱ,Academic Press,New York(1975),450-521.
    [8]
    Brun,L.,Finite shock waves in elastic solids,in Mechanical Waves in Solids,eds.J.Mandel and L.Brun,Springer-Verlag,Wien(1975),63-155.(in French).
    [9]
    Maugin,G.A.,Nonlinear Electrorcechanical Interactions and Applications-A Series of Lectures,World Scientific Publ.Singapore(in the press,1985).
    [10]
    Collet,B.,Shock waves in deformable piezoelectric materials,in Proc.11th Intern.Congress of Acoustics(Paris,July 1983),Special Issue of Revue d'Acoustique,Vol.2(1983),125-128.
    [11]
    Collet,B.,On the behavior of plane shock waves in deformable dielectric materials,Int.J Engng.Sci.,21(1983),1145-1155,.
    [12]
    Sidoroff F.,Internal variables in viscoelasticity and plasticity,Doctoral Thesis in Mathematics,University of Paris Ⅵ(mimeographed,1976).
    [13]
    Maugin,G.A.,Electromagnetic internal variables in electromagnetic continua.Archives of Mechanics,33(1981),927-935.
    [14]
    Collet,B.,Shock waves in deformable ferroelectric materials,in The Mechanical Behavior of Electromagnetic Solid Continua,ed.G.A.Maugin,North-Holland,Amsterdam (1984),157-163.
    [15]
    Collet,B.,Nonlinear wave propagation in elastic dielectrics with internal varlables,J.Technical Physics (Warsaw,Poland)
    [16]
    Peyret,R.,Numerical Solution of Hyperbolic Systems:Application to Gas Dynamics,Publication of the Office National d'Etude et de Recherche Aérospatiale Paris (1977).
    [17]
    Nayfen,A.H.and D.T.Mook,Nonlinear Oscillations,J.Wiley-Interscience,New York (1979).
    [18]
    Pouget,J.and G.A.Maugin,Solitons and electroacoustic interactions in ferroelectric crystals-I:Single solitons and domain walls,Physical Review,B30(1984),5306-5325.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1649) PDF downloads(475) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return