Huang Xiao-fan. The Optimal Point of the Gradient of Finite Element Solution[J]. Applied Mathematics and Mechanics, 1986, 7(8): 729-738.
Citation: Huang Xiao-fan. The Optimal Point of the Gradient of Finite Element Solution[J]. Applied Mathematics and Mechanics, 1986, 7(8): 729-738.

The Optimal Point of the Gradient of Finite Element Solution

  • Received Date: 1984-12-25
  • Publish Date: 1986-08-15
  • We consider the first boundary value problem of the second order elliptic equation and serendipity rectangular elements. Papers [2,3,9] proved that the gradients of finite element solution possess superconvergence at Gaussianpoint. In this paper, we extend the results in papers [2,3,9] in the sense that the coefficients of the elliptic equations are discontinuous on a curve S which lies in the bounded domain Ω.
  • loading
  • [1]
    陈传森,三角形线性元的应力佳点,高等学校计算数学学报,2 (1980), 12-20.
    [2]
    Zlamal, M.,Some superconvergence results in the finite element method, Lecture Notes in Mathematics, 606 (1977),353-362.
    [3]
    Zlamal, M,Superconvergence and reduced integration in the finite element method,Math, Comp,32 (1978),663-685.
    [4]
    Ciarlet, P, G, and P, A, Raviart, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch, Rat, Mech, Anal,46 (1972),177-199.
    [5]
    Zienkiewicz, O, C,The Finite Element Method in Engineering Science, Mc-Graw Hill, London (1977).
    [6]
    Ciarlet, P,The Finite Element 1Vlethod for Elliptic Problems, North-Holland, Amsterdam (1978).
    [7]
    陈传森,《有限元方法及其提高精度的分析》,湖南科技出版社(1982).
    [8]
    Adams, R, A.,Sobolev Space, Academic Press, New York (1975).
    [9]
    陈传森,有限元解及其导数的超收敛性,高等学校计算数学学报,3 (1981), 118-125.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1904) PDF downloads(478) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return