Xu Zhen-yuan, Liu Zheng-rong. Perturbation Solution of the Weak-Nonlinear Partial Differential Equation with δ-Function[J]. Applied Mathematics and Mechanics, 1987, 8(2): 143-150.
Citation:
Xu Zhen-yuan, Liu Zheng-rong. Perturbation Solution of the Weak-Nonlinear Partial Differential Equation with δ-Function[J]. Applied Mathematics and Mechanics, 1987, 8(2): 143-150.
Xu Zhen-yuan, Liu Zheng-rong. Perturbation Solution of the Weak-Nonlinear Partial Differential Equation with δ-Function[J]. Applied Mathematics and Mechanics, 1987, 8(2): 143-150.
Citation:
Xu Zhen-yuan, Liu Zheng-rong. Perturbation Solution of the Weak-Nonlinear Partial Differential Equation with δ-Function[J]. Applied Mathematics and Mechanics, 1987, 8(2): 143-150.
Perturbation Solution of the Weak-Nonlinear Partial Differential Equation with δ-Function
Received Date: 1985-09-24
Publish Date:
1987-02-15
Abstract
In this paper we extend the method which Liu Zheng-rong provided to the weak-nonlinear partial equation with δ-function.
References
[1]
刘曾荣、魏锡荣,含有δ函数的弱非线性微分方程的摄动解,应用数学和力学,5.5 (1984),691-697.
[2]
Nayfeh,A.H.and Deam.T.Mook,Nonlinear Oscillations,Wiley-Interscience(1979).
[3]
Nayfeh,A.H.,Perturbation Methods,Wiley-Interscience(1973).
Relative Articles
[1] HUANG Feng-hui, GUO Bo-ling. General Solution for a Class of Time Fractional Partial Differential Equation [J]. Applied Mathematics and Mechanics, 2010, 31(7): 781-790. doi: 10.3879/j.issn.1000-0887.2010.07.003
[2] XU Cheng-long, GUO Ben-yu. Modified Laguerre Spectral and Pseudospectral Methods for Nonlinear Partial Differential Equations in Multiple Dimensions [J]. Applied Mathematics and Mechanics, 2008, 29(3): 281-300.
[3] ZHANG Hong-qing, DING Qi. Analytic Solutions of a Class of Nonlinear Partial Differential Equations [J]. Applied Mathematics and Mechanics, 2008, 29(11): 1268-1278.
[4] CHEN Li-hua, MO Jia-qi. Singularly Perturbed Soluton for Weakly Nonlinear Equations With Two Parameters [J]. Applied Mathematics and Mechanics, 2007, 28(10): 1197-1202.
[5] MEI Shu-li, LU Qi-shao, ZHANG Sen-wen, JIN Li. Adaptive Interval Wavelet Precise Integration Method for Partial Differential Equations [J]. Applied Mathematics and Mechanics, 2005, 26(3): 333-340.
[6] SHI Wei-hui, SHEN Zhen. Formal Solutions and Projective Limit of P. D. E [J]. Applied Mathematics and Mechanics, 2003, 24(11): 1133-1140.
[7] ZHANG Hong-qing, XIE Fu-ding, LU Bin. A Symbolic Computation Method to Decide the Completeness of the Solutions to the System of Linear Partial Differential Equations [J]. Applied Mathematics and Mechanics, 2002, 23(10): 1008-1012.
[8] LIU An-ping, HE Meng-xing. Oscillatory Properties of the Solutions of Nonlinear Delay Hyperbolic Differential Equations of Neutral Type [J]. Applied Mathematics and Mechanics, 2002, 23(6): 604-610.
[9] LIU Shi-kuo, FU Zun-tao, LIU Shi-da, ZHAO Qiang. A Simple Fast Method in Finding Particular Solutions of Some Nonlinear PDE [J]. Applied Mathematics and Mechanics, 2001, 22(3): 281-286.
[10] Guo Ai. Initial Value Problems for a Class of Nonlinear Integro-Partial Differential Equations [J]. Applied Mathematics and Mechanics, 1999, 20(6): 640-646.
[11] Ding Xieping, Wang Fan. Solutions for a System of Nonlinear Random Integral and Differential Equations under Weak Topology [J]. Applied Mathematics and Mechanics, 1997, 18(8): 669-684.
[12] Shi Weihui, Chen Daduan, Tang Yiming. On the Exact Solution to Certain Non-Linear Partial Differential Equations [J]. Applied Mathematics and Mechanics, 1997, 18(3): 239-245.
[13] Wang Guanxiang, Xu Zhengyuan, Liu Zengrong. An Example of PDE with Two Attractors [J]. Applied Mathematics and Mechanics, 1995, 16(9): 775-780.
[14] Zhang Hong-qing, Yang Guang. Constructions of the General Solution for a System of Partial Differential Equations with Variable Coefficients [J]. Applied Mathematics and Mechanics, 1991, 12(2): 135-139.
[15] Lin Peng-cheng, Jiang Ben-xian. A Singular Perturbation Problem for Periodic Bounday Partial Differentia! Equation [J]. Applied Mathematics and Mechanics, 1991, 12(3): 259-268.
[16] Wu Chi-kuang. The Boundary Layer Method for the Solution of Singular Perturbation Problem for the Parabolic Partial Differential Equation [J]. Applied Mathematics and Mechanics, 1987, 8(1): 11-16.
[17] Sheng Jin-reng. A Difference Method for Singular Perturbation Problem of Hyperbolic-Parabolic Partial Differential Equation [J]. Applied Mathematics and Mechanics, 1986, 7(2): 145-153.
[18] Gai Bing-zheng. On the Structure of Solutions of Linear Partial Differential Equation i+j≤n aij pi qj φ=0 With Two Independent Variables and Constant Coefficients [J]. Applied Mathematics and Mechanics, 1985, 6(5): 431-445.
[19] Liu Zheng-rong, Wei Si-rong. Perturbation Solution of the Weak-Nonlinear Differential Equation with δ-Function [J]. Applied Mathematics and Mechanics, 1984, 5(5): 691-697.
[20] Su Yu-cheng, Wu Chi-kuang. The Difference Method for the Solution of Singular-Perturbation Problems for the Elliptic-Parabolic Partial Differential Equation [J]. Applied Mathematics and Mechanics, 1980, 1(2): 167-176.
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 2025-05 0 10 20 30 40
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 14.0 % FULLTEXT : 14.0 % META : 85.3 % META : 85.3 % PDF : 0.7 % PDF : 0.7 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 1.5 % 其他 : 1.5 % China : 0.9 % China : 0.9 % Singapore : 0.2 % Singapore : 0.2 % 上海 : 0.2 % 上海 : 0.2 % 北京 : 2.1 % 北京 : 2.1 % 哥伦布 : 0.4 % 哥伦布 : 0.4 % 山景城 : 0.7 % 山景城 : 0.7 % 张家口 : 3.0 % 张家口 : 3.0 % 惠州 : 0.4 % 惠州 : 0.4 % 扬州 : 0.2 % 扬州 : 0.2 % 杭州 : 0.2 % 杭州 : 0.2 % 洛杉矶 : 0.6 % 洛杉矶 : 0.6 % 淄博 : 0.2 % 淄博 : 0.2 % 深圳 : 0.7 % 深圳 : 0.7 % 石家庄 : 1.1 % 石家庄 : 1.1 % 舟山 : 0.2 % 舟山 : 0.2 % 芒廷维尤 : 11.2 % 芒廷维尤 : 11.2 % 西宁 : 75.9 % 西宁 : 75.9 % 西安 : 0.4 % 西安 : 0.4 % 其他 China Singapore 上海 北京 哥伦布 山景城 张家口 惠州 扬州 杭州 洛杉矶 淄博 深圳 石家庄 舟山 芒廷维尤 西宁 西安