Citation: | Wang Pu, R. Kahawita. The Numerical Solution of the Unsteady Natural Convection Flow in a Square Cavity at High Rayleigh Number Using SADI Method[J]. Applied Mathematics and Mechanics, 1987, 8(3): 215-224. |
[1] |
Patterson, J.and J.Imberger, unsteady natural convection in a rectangular cavity, J.Fluid Mech., 100(1980), 65-86.
|
[2] |
9 J.S.L ee and L.Z.Jiang,A boundary integral formulation and 2D fundamental solution for piezo-electric media,Mech.Res.Comm.,21(2)(1994),47-54.
|
[3] |
Rubin, S.G.and R.A.Graves, Viscous flows solutions with a cubic spline approximation, Computer and Fluids, 3(1975), 1-36.
|
[4] |
Rubin, S.G.and P.K.Khosla, Higher order numerical solutions using cubic splines, AIAA JOurnal, 14(1976), 851-858.
|
[5] |
Wang, P.and R.Kahawita, Numerical integration of partial differential equations using cubic splines, Int.J Computer Math., 13(1983), 271-286.
|
[6] |
王璞,R, Kahawita, Burgers方程的立方样条数值解法,空气动力学学报,2 (1984), 11-18.
|
[7] |
王璞,样条Las-Wandroff格式和样条跳蛙格式,空气动力学学报,3 (1985),90-95.
|
[8] |
Wang, P.and R.Kahawita, A two-dimensional model of estuarine circulation using cubic splines, Can.J.Civil Eng., 10(1983), 116-124.
|
[9] |
De Vahl Davis, G., Natural convection of air, a square cavity:an accurate numerical solution, Report FMT/1, University of N.S.W., Kensington, Australia(1981).
|
[10] |
Lauriat, G., Accurate solutions of natural convection flow in square cavities at high raleigh numbers with a cubic spline approximation, ASME Winter Annual Meeting, Phoenix, Arizona(1982).
|
[11] |
Wang, P.and R.Kahawita, The numerical solution of the natural convection flow in a square cavity, Proc.of 4th Int.Conf.on Mathematical Modelling in Sciencc and Technology, Zurich, Aug.24-26(1983), 640-645.
|
[12] |
王璞,方形空腔中关于Ra=107的非定常自然对流的样条数值模拟,力学学报(待发表).
|
[13] |
Upson, C.D., P.M.Greho, and R.L.Lee, Finite element simulations of thermally induced convection in anenclosed cavity, Report UCID 18602, Lawrence Livermore Laboratory, Mars(1980).
|