Fan Xi-jun. The Effect of the Hydrodynamic Interaction on the Rheological Properties of Hookean Dumbbell Suspensions in Steady State Shear Flow[J]. Applied Mathematics and Mechanics, 1987, 8(9): 781-789.
Citation:
Fan Xi-jun. The Effect of the Hydrodynamic Interaction on the Rheological Properties of Hookean Dumbbell Suspensions in Steady State Shear Flow[J]. Applied Mathematics and Mechanics, 1987, 8(9): 781-789.
Fan Xi-jun. The Effect of the Hydrodynamic Interaction on the Rheological Properties of Hookean Dumbbell Suspensions in Steady State Shear Flow[J]. Applied Mathematics and Mechanics, 1987, 8(9): 781-789.
Citation:
Fan Xi-jun. The Effect of the Hydrodynamic Interaction on the Rheological Properties of Hookean Dumbbell Suspensions in Steady State Shear Flow[J]. Applied Mathematics and Mechanics, 1987, 8(9): 781-789.
The diffusion equation for the configurational distribution function of Hookean dumbbell suspensions with the hydrodynamic interaction(HI) was solved, in terms of Galerkin's method, in steady state shear flow;and viscosity,first and second normal-stress coefficients and molecular stretching were then calculated. The results indicate that the HI included in a microscopic model of molecules gives rise to a significant effect on the macroscopic properties of Hookean dumbbell suspensions. For example, the viscosity and the first normal stress coefficient, decreasing as shear rate increases, are no longer constant;the second normal-stress coefficient, being negative with small absolute value and shear-rate dependent, is no longer zero;and an additional stretching of dumbbells is yielded by the HI. The viscosity function and the first normal-stress coefficient calculated from this method are in agreement with those predicted from the self-consistent average method qualitatively, while the negative second normal-stress coefficient from the former seems to be more reasonable than the positive one from the latter.
Kirkwood,J.G.and J.Riseman,The intrinsic viscosities and diffusion constants of flexible macromolecules in solution,J.Chem.Phys.,16(1948),565-573.
[2]
Bird,R.B.,O.Hassager,R.C.Armstrong and C.F.Curtiss,Dynamic of Polymeric Liquids,Vol.2,Kinetic Theory,Wiley,New York(1977).
[3]
Zimm,B.H.Theory of the non-Newtonian viscosity of high polymer solution,Ann.N.Y.Acad.Sci.,89(1961),670-671.
[4]
Pyun,C.W.and M.Fixman,Intrinsic viscosity of polymer chains,J.Chem.Phys.,42(1965),3838-3844.
[5]
Fixman,M.,Inclusion of hydrodynamic interaction in polymer dynamical simulations,Macromolecules,14,(1981),1710-1717.
[6]
Öttinger,H.C.,Consistently averaged hydrodynamic interaction for rouse dumbbells,J.Chen.Phys.,83,(1985),6535-6536.
[7]
Fan,X.J.,Viscosity,first normal-stress coefficient,and molecular stretching in dilute polymer solutions,J.Non-Newtonian Fluid Mech.,17(1985),125-144;Viscosity,first and second normal-stress coefficients,and molecular stretching in concentrated solutions and melts,ibid,17(1985),251-265.