Zhao Wei-li. Singular Perturbation of boundary Value Problems for Second Order Nonlinear Ordinary Differential Equations on infinite Interval(Ⅰ)[J]. Applied Mathematics and Mechanics, 1989, 10(1): 43-50.
Citation: Zhao Wei-li. Singular Perturbation of boundary Value Problems for Second Order Nonlinear Ordinary Differential Equations on infinite Interval(Ⅰ)[J]. Applied Mathematics and Mechanics, 1989, 10(1): 43-50.

Singular Perturbation of boundary Value Problems for Second Order Nonlinear Ordinary Differential Equations on infinite Interval(Ⅰ)

  • Received Date: 1986-09-20
  • Publish Date: 1989-01-15
  • In this paper existence, uniqueness and asymptotic estimations of solutions of the boundary value problems on infinite interval for the second order nonlinear equation depending singularly on a small parameter are examined, where αi, β are constants, and i=0,1.
  • loading
  • [1]
    伍卓群,一类常微分方程边值问题的奇摄动—(I)方程式的情形,吉林大学自然科学学报,2(1963),91-104.
    [2]
    周钦德,一类常微分方程奇摄动问题解的渐近展开,吉林大学自然科学学报,4 (1979),1-19.
    [3]
    周钦德,一类奇摄动边值问题解的渐近展开,吉林大学自然科学学报,4 (1980),12-26
    [4]
    周钦德,一类奇摄动边值问题近似常数解的渐近展开,吉林大学自然科学学报,2 (1981),12-22.
    [5]
    周钦德,某类奇摄动边值问题解的渐近展开,吉林大学自然科学学报,3 (1981),37-50.
    [6]
    赵为礼,一类常微分方程无穷边值问题的奇摄动,吉林大学自然科学学报,3 (1881),27-36.
    [7]
    Scbrader,K.W.,Existence theorems for second order boundary value problems,J.Diff.Eqs.,5(1969),572-584.
    [8]
    Nagumo.M.,Uber die Differentialgleichung y"=f(x,y,y'),Proc.Phys.Math.Soc.Japan.19 Ser 3,10(1937),861-866.
    [9]
    Jackson.L.K.,Subfunctions and second-order ordinary differential inequalities,Adv.Math.,2(1968),307-363.
    [10]
    Klaasen.G.A.,Differential inequalities and existence theorems for second and third order boundary value problems.J.Diff.Eqs.,10(1971),529-537.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1428) PDF downloads(396) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return